Math 109	Homework 4	T.A. Tai Melcher
UCSD Fall 2003		Office AP&M 6402E

Problem 2.55: For each natural number n, let $A_n = \left[-\frac{1}{n}, \frac{1}{n}\right]$ and $B_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$. Find $\bigcap_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} B_n$.

$$\bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} \left[-\frac{1}{n}, \frac{1}{n} \right] = \{0\}$$

and

$$\bigcap_{n\in\mathbb{N}} B_n = \bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$$

Problem 2.63: Give an example of a collection of sets indexed by a set consisting of 5 members.

There are infinite such examples, but one collection that would work would be

$$\mathcal{A} = \{ (n-1, n+1) : n \in \mathbb{N}, n \le 5 \},\$$

or rather $\mathcal{A} = \{A_n : n \in \Lambda\}$, where

$$A_n = (n - 1, n + 1) \text{ and } \Lambda = \{n \in \mathbb{N} : n \le 5\}.$$

Problem 2.64: Give an example of a collection of sets indexed by the set of prime numbers.

Again, an infinite number of solutions exist, but one example would be

 $\mathcal{A} = \{\{p-5, p, p+2\} : p \in \mathbb{N}, p \text{ prime}\},\$

or, if you like, $\mathcal{A} = \{A_p : p \in \Lambda\}$, where

$$A_p = \{p - 5, p, p + 2\} \text{ and } \Lambda = \{p \in \mathbb{N} : p \text{ prime}\}.$$

Problem 2.65: Prove Theorem 2.9(c): Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be an indexed family of sets. Then

$$\left(\bigcap \{A_{\alpha} : \alpha \in \Lambda\}\right)' = \bigcup \{A'_{\alpha} : \alpha \in \Lambda\}.$$

Proof. To show the equality of two sets, one must show that each is a subset of the other. Here, I will show

$$\left(\bigcap \{A_{\alpha} : \alpha \in \Lambda\}\right)' \subset \bigcup \{A'_{\alpha} : \alpha \in \Lambda\},\$$

and leave the other containment argument to you – it is basically the same.

So let $x \in (\cap \{A_{\alpha} : \alpha \in \Lambda\})'$. By definition of the complement then, $x \notin \cap \{A_{\alpha} : \alpha \in \Lambda\}$. Thus, there exists some $\alpha' \in \Lambda$ such that $x \notin A_{\alpha'}$. Thus, $x \in (A_{\alpha'})'$, and so $x \in \cup \{A'_{\alpha} : \alpha \in \Lambda\}$ as desired. **Problem 2.70**: Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be an indexed family of sets. Prove that

$$\bigcup_{\alpha,\beta\in\Lambda,\alpha\neq\beta} (A_{\alpha} - A_{\beta}) \subset \bigcup_{\alpha\in\Lambda} A_{\alpha} - \bigcap_{\alpha\in\Lambda} A_{\alpha}.$$

Proof. Let $x \in \bigcup_{\alpha,\beta\in\Lambda,\alpha\neq\beta}(A_{\alpha}-A_{\beta})$. Then there exist some $\alpha',\beta'\in\Lambda$ such that $\alpha'\neq\beta'$ and $x\in A_{\alpha'}-A_{\beta'}$. By definition of the difference of sets, $x\in A_{\alpha'}$ and $x\notin A_{\beta'}$. $x\in A_{\alpha'}$ implies that $x\in \bigcup_{\alpha\in\Lambda}A_{\alpha}$. $x\notin A_{\beta'}$ implies that $x\notin \bigcap_{\alpha\in\Lambda}A_{\alpha}$. So

$$x \in \bigcup_{\alpha \in \Lambda} A_{\alpha} - \bigcap_{\alpha \in \Lambda} A_{\alpha}.$$

Since x was an arbitrary element of $\bigcup_{\alpha,\beta\in\Lambda,\alpha\neq\beta}(A_{\alpha}-A_{\beta})$, this implies that

$$\bigcup_{\alpha,\beta\in\Lambda,\alpha\neq\beta} (A_{\alpha} - A_{\beta}) \subset \bigcup_{\alpha\in\Lambda} A_{\alpha} - \bigcap_{\alpha\in\Lambda} A_{\alpha}.$$