Problem 2.55: For each natural number n, let $A_{n}=\left[-\frac{1}{n}, \frac{1}{n}\right]$ and $B_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. Find $\cap_{n \in \mathbb{N}} A_{n}$ and $\cap_{n \in \mathbb{N}} B_{n}$.

$$
\bigcap_{n \in \mathbb{N}} A_{n}=\bigcap_{n \in \mathbb{N}}\left[-\frac{1}{n}, \frac{1}{n}\right]=\{0\}
$$

and

$$
\bigcap_{n \in \mathbb{N}} B_{n}=\bigcap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\} .
$$

Problem 2.63: Give an example of a collection of sets indexed by a set consisting of 5 members.
There are infinite such examples, but one collection that would work would be

$$
\mathcal{A}=\{(n-1, n+1): n \in \mathbb{N}, n \leq 5\}
$$

or rather $\mathcal{A}=\left\{A_{n}: n \in \Lambda\right\}$, where

$$
A_{n}=(n-1, n+1) \text { and } \Lambda=\{n \in \mathbb{N}: n \leq 5\}
$$

Problem 2.64: Give an example of a collection of sets indexed by the set of prime numbers.
Again, an infinite number of solutions exist, but one example would be

$$
\mathcal{A}=\{\{p-5, p, p+2\}: p \in \mathbb{N}, p \text { prime }\}
$$

or, if you like, $\mathcal{A}=\left\{A_{p}: p \in \Lambda\right\}$, where

$$
A_{p}=\{p-5, p, p+2\} \text { and } \Lambda=\{p \in \mathbb{N}: p \text { prime }\}
$$

Problem 2.65: Prove Theorem 2.9(c): Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be an indexed family of sets. Then

$$
\left(\bigcap\left\{A_{\alpha}: \alpha \in \Lambda\right\}\right)^{\prime}=\bigcup\left\{A_{\alpha}^{\prime}: \alpha \in \Lambda\right\}
$$

Proof. To show the equality of two sets, one must show that each is a subset of the other. Here, I will show

$$
\left(\bigcap\left\{A_{\alpha}: \alpha \in \Lambda\right\}\right)^{\prime} \subset \bigcup\left\{A_{\alpha}^{\prime}: \alpha \in \Lambda\right\}
$$

and leave the other containment argument to you - it is basically the same.

So let $x \in\left(\cap\left\{A_{\alpha}: \alpha \in \Lambda\right\}\right)^{\prime}$. By definition of the complement then, $x \notin \cap\left\{A_{\alpha}: \alpha \in \Lambda\right\}$. Thus, there exists some $\alpha^{\prime} \in \Lambda$ such that $x \notin A_{\alpha^{\prime}}$. Thus, $x \in\left(A_{\alpha^{\prime}}\right)^{\prime}$, and so $x \in \cup\left\{A_{\alpha}^{\prime}: \alpha \in \Lambda\right\}$ as desired.

Problem 2.70: Let $\left\{A_{\alpha}: \alpha \in \Lambda\right\}$ be an indexed family of sets. Prove that

$$
\bigcup_{\alpha, \beta \in \Lambda, \alpha \neq \beta}\left(A_{\alpha}-A_{\beta}\right) \subset \bigcup_{\alpha \in \Lambda} A_{\alpha}-\bigcap_{\alpha \in \Lambda} A_{\alpha} .
$$

Proof. Let $x \in \cup_{\alpha, \beta \in \Lambda, \alpha \neq \beta}\left(A_{\alpha}-A_{\beta}\right)$. Then there exist some $\alpha^{\prime}, \beta^{\prime} \in \Lambda$ such that $\alpha^{\prime} \neq \beta^{\prime}$ and $x \in A_{\alpha^{\prime}}-A_{\beta^{\prime}}$. By definition of the difference of sets, $x \in A_{\alpha^{\prime}}$ and $x \notin A_{\beta^{\prime}} . x \in A_{\alpha^{\prime}}$ implies that $x \in \cup_{\alpha \in \Lambda} A_{\alpha} . x \notin A_{\beta^{\prime}}$ implies that $x \notin \cap_{\alpha \in \Lambda} A_{\alpha}$. So

$$
x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}-\bigcap_{\alpha \in \Lambda} A_{\alpha} .
$$

Since x was an arbitrary element of $\cup_{\alpha, \beta \in \Lambda, \alpha \neq \beta}\left(A_{\alpha}-A_{\beta}\right)$, this implies that

$$
\bigcup_{\alpha, \beta \in \Lambda, \alpha \neq \beta}\left(A_{\alpha}-A_{\beta}\right) \subset \bigcup_{\alpha \in \Lambda} A_{\alpha}-\bigcap_{\alpha \in \Lambda} A_{\alpha} .
$$

