
Math 109 Homework 6 T.A. Tai Melcher
UCSD Fall 2003 Office AP&M 6402E

This is not a complete list of the solutions. Problems with sufficient
solutions in the back of the text were not included.

Problem 3.41: Let x1 = 1, and for n > 1, let xn =
√

3xn−1 + 1.
Prove that xn < 4 for all n ∈ N.

Proof. Let x1 = 1, and for n > 1, let xn =
√

3xn−1 + 1. Let S =
{n ∈ N : xn < 4}. 1 ∈ S because x1 = 1 < 4. Assume n ∈ S. Then

xn+1 =
√

3xn + 1 <
√

3 · 4 + 1 =
√

13 < 4,

where the first inequality is due to the inductive hypothesis. Hence
n + 1 ∈ S. Therefore, by the Principle of Mathematical Induction,
S = N. �

Problem 3.51: Prove by induction that for each natural number n,

n∑
k=1

2k−1 = 2n − 1.

Proof. Let S = {n ∈ N :
∑n

k=1 2k−1 = 2n − 1}. Note that 1 ∈ S since

1∑
k=1

2k−1 = 21−1 = 1 = 21 − 1.

Now suppose n ∈ S. Then
∑n

k=1 2k−1 = 2n − 1, and

n+1∑
k=1

2k−1 =

(
n∑

k=1

2k−1

)
+ 2n

= (2n − 1) + 2n = 2 · 2n − 1 = 2n+1 − 1.

Thus n+1 ∈ S and by the Principle of Mathematical Induction, S = N.
�

Problem 3.61: For each natural number n, let f(n) denote the num-
ber of subsets of {1, 2, 3, . . . , n} that do not contain two consecutive
numbers.

a) Find a pattern for f(n). (Don’t forget to count the empty set.)

First we consider f(n) for small n.
1
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n subsets of desired form f(n)
1 ∅, {1} 2
2 ∅, {1}, {2} 3
3 ∅, {1}, {2}, {3}, {1, 3} 5
4 ∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4} 8

5
∅, {1}, {2}, {3}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5},

{2, 4}, {2, 5}, {3, 5}, {1, 3, 5} 13

We observe that when n = 3, 4, 5, f(n) = f(n − 1) + f(n − 2). So we
make this our guess.

b) Use the Second Principle of Mathematical Induction to prove that
your pattern is correct.

Proof. Let S = {n ∈ N : n ≥ 3 and f(n) = f(n− 1) + f(n− 2)}. We
can see from the above that 3 ∈ S, since f(3) = 5 = 3+2 = f(2)+f(1).
Now suppose that n ≥ 3 and {3, 4, 5, . . . , n} ⊂ S. The subsets of
{1, 2, 3, . . . , n+1} that do not contain two consecutive natural numbers
are

(i) those subsets of {1, 2, 3, . . . , n} that do not contain two con-
secutive natural numbers, and

(ii) those subsets of {1, 2, 3, . . . , n, n + 1} that contain n + 1 and
no consecutive natural numbers.

The number of subsets of {1, 2, 3, . . . , n} that do not contain two con-
secutive natural numbers is f(n). The subsets of {1, 2, 3, . . . , n, n + 1}
that contain n + 1 but do not contain two consecutive natural num-
bers are subsets of the form A ∪ {n + 1}, where A is a subset of
{1, 2, 3, . . . , n−1} which does not contain two consecutive natural num-
bers. The number of such sets is f(n − 1). Therefore, f(n + 1) =
f(n) + f(n − 1), so n + 1 ∈ S. By the Extended Second Principle of
Mathematical Induction, S = {3, 4, 5, . . .}. �

Problem 3.64: Let f1, f2, f3, . . . be the Fibonacci numbers. Prove by
induction that for each natural number n:

a) f1 + f3 + f5 + · · ·+ f2n−1 = f2n.

Proof. Let S = {n ∈ N : f1 + f3 + f5 + · · · + f2n−1 = f2n}. Since
f1 = 1 and f2 = 1, we have f1 = f2·1, which shows that 1 ∈ S. Now
assume that n ∈ S, which means f1 + f3 + f5 + · · ·+ f2n−1 = f2n. Then

f1 + f3 + f5+ · · ·+ f2n−1 + f2(n+1)−1

= f1 + f3 + f5 + · · ·+ f2n−1 + f2n+1

= f2n + f2n+1 = f2n+2 = f2(n+1),
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where the penultimate equality holds by definition of the Fibonacci
sequence. Therefore, n + 1 ∈ S. By the Principal of Mathematical
Induction, S = N, and we have that f1 + f3 + f5 + · · · + f2n−1 = f2n

holds for all n. �

b) f2 + f4 + . . . + f2n = f2n+1 − 1.

Proof. Let S = {n ∈ N : f2 + f4 + . . . + f2n = f2n+1 − 1}. Then
1 ∈ S, since f2·1 = 1 = 2 − 1 = f2·1+1 − 1. Suppose n ∈ S. That is,
f2 + f4 + . . . + f2n = f2n+1 − 1. Then

f2 + f4 + . . . + f2n + f2(n+1) = (f2n+1 − 1) + f2n+2

= f2n+3 − 1 = f2(n+1)+1 − 1,

where the second equality holds by definition of the Fibonacci sequence.
Thus, n + 1 ∈ S, and by the Principal of Mathematical Induction,
S = N. �

Problem 3.71: The “name-one-thousand” game is a two-player game.
The first player names 1, 2, or 3. Thereafter, each player in turn adds
1, 2, or 3 to the previous total. The first player to name 1000 wins.
Prove by induction that the second player has a winning strategy.

Proof. Let S = {n ∈ N : 1000− 4n is a winning position for the second player.} .
1 ∈ S because if the first player adds k ∈ {1, 2, 3} to the value 996, the
second player responds by adding 4 − k, which is also in {1, 2, 3}, to
bring the total to 1000, thereby winning the game.

Assume n ∈ N, where n ≤ 250, that is, 1000 − 4n is a winning
position for the second player. Consider playing from the position
1000 − 4(n + 1). If the first player adds k ∈ {1, 2, 3} to the value
1000−4(n+1), then the second player responds by adding 4−k, which
is also in {1, 2, 3}, thereby bringing the total to 1000 − 4n, which by
the inductive hypothesis is a winning position for that player. Hence
n + 1 ∈ S. Therefore, by the Principal of Mathematical Induction,
S = N and in particular, 250 ∈ S, so 0 (the starting position) is a
winning position for the second player. �

Problem 3.75: For each natural number i, let fi be the ith Fibonacci
number and let

ai =

(
1+

√
5

2

)i

−
(

1−
√

5
2

)i

√
5

.

Prove by induction that for each i ∈ N, fi = ai.
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Proof. Let S = {i ∈ N : fi = ai}. Note that

a1 =

(
1+

√
5

2

)
−
(

1−
√

5
2

)
√

5
=

√
5√
5

= 1 = f1

and so 1 ∈ S. We also have that

a2 =

(
1+

√
5

2

)2

−
(

1−
√

5
2

)2

√
5

=
1+2

√
5+5−1+2

√
5−5

4√
5

= 1 = f2

and so 2 ∈ S. Now suppose {1, . . . , i} ⊂ S where i > 2. We would like
to show that ai+1 = fi+1 and so i + 1 ∈ S. Note that this is equivalent
to proving

(1) ai+1 = ai + ai−1

because i − 1, i ∈ S implies that ai−1 = fi−1 and ai = fi, and so (1)
implies

ai+1 = ai + ai−1 = fi + fi−1 = fi+1

by definition of the Fibonacci sequence. So if we can prove (1), then
we’re done.

To do this, we first make the following observations.

(2)

(
1 +

√
5

2

)(
1−

√
5

2

)
= −1,

(3) 1− 1 +
√

5

2
=

1−
√

5

2
and 1− 1−

√
5

2
=

1 +
√

5

2
.

We also have that

1 +
√

5

2
+ 1 =

1 +
√

5

2
−

(
1 +

√
5

2

)(
1−

√
5

2

)

=
1 +

√
5

2

(
1− 1−

√
5

2

)
=

(
1 +

√
5

2

)2

.

(4)

If we let A = 1+
√

5
2

and B = 1−
√

5
2

, we may rewrite the above calcula-
tions as follows:

(2’) AB = −1

(3’) 1− A = B and 1−B = A

(4’) A + 1 = A + (−AB) = A(1−B) = A2.
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Similarly, we could show that B + 1 = B2. Given these identities, we
consider the following:

ai + ai−1 =
Ai −Bi

√
5

+
Ai−1 −Bi−1

√
5

=
Ai−1(A + 1)−Bi−1(B + 1)√

5

=
Ai−1A2 −Bi−1B2

√
5

=
Ai+1 −Bi+1

√
5

= ai+1.

Therefore, since ai = fi, ai−1 = fi−1, and fi+1 = fi + fi−1, we have
ai+1 = fi+1 and i + 1 ∈ S. By the Second Principle of Mathematical
Induction, S = N. �

Problem 3.83: A certain rare goblet is supposed to weigh 43 ounces.
Explain how to check the weight of this goblet given a balance scale and
1000 each of 7-oz and 11-oz weights.

First note that

11 = 1(7) + 4

7 = 1(4) + 3

4 = 1(3) + 1

3 = 3(1) + 0,

and so

1 = 4− 1(3)

= 4− 1[7− 1(4)]

= 2(4)− 1(7)

= 2[11− 1(7)]− 1(7)

= 2(11)− 3(7).

Then we have that

43 = 43[2(11)− 3(7)] = 86(11)− 129(7)

So put 86 11-oz weights on one side of the scale, and put 129 7-oz
weights together with the goblet on the other side of the scale.

Problem 3.84(a): Use the Euclidean algorithm to find gcd(901,952)
and to find integers m and n such that 901m + 952n = gcd(901,952).
Show your work.
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952 = 1(901) + 51

901 = 17(51) + 34

51 = 1(34) + 17

34 = 2(17) + 0

So gcd(952,901) = 17, and

17 = 51− 34

= 51− [901− 17(51)]

= 18(51)− 901

= 18(952− 901)− 901

= 18(952)− 19(901).

Problem 3.93: Suppose a, b, and c are integers with a and b not both
0 and that d = gcd(a, b). Prove that if d does not divide c, then the
equation ax + by = c has no integer solutions for x and y.

Proof. Suppose a, b, and c are integers with a and b not both 0 and
that d = gcd(a, b). Suppose x and y are integers satisfying the equation
ax + by = c. Since d|a, and d|b, there exist integers m and n such that
a = dm and b = dn. Then d(mx + ny) = dmx + dny = c. Therefore
d|c. �

NOTE: The above is a proof of the contrapositive, NOT a proof by
contradiction, of the desired statement.


