T.A. Tai Melcher Office AP\&M 6402E

This is not a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 3.41: Let $x_{1}=1$, and for $n>1$, let $x_{n}=\sqrt{3 x_{n-1}+1}$. Prove that $x_{n}<4$ for all $n \in \mathbb{N}$.
Proof. Let $x_{1}=1$, and for $n>1$, let $x_{n}=\sqrt{3 x_{n-1}+1}$. Let $S=$ $\left\{n \in \mathbb{N}: x_{n}<4\right\} .1 \in S$ because $x_{1}=1<4$. Assume $n \in S$. Then

$$
x_{n+1}=\sqrt{3 x_{n}+1}<\sqrt{3 \cdot 4+1}=\sqrt{13}<4
$$

where the first inequality is due to the inductive hypothesis. Hence $n+1 \in S$. Therefore, by the Principle of Mathematical Induction, $S=\mathbb{N}$.

Problem 3.51: Prove by induction that for each natural number n,

$$
\sum_{k=1}^{n} 2^{k-1}=2^{n}-1
$$

Proof. Let $S=\left\{n \in \mathbb{N}: \sum_{k=1}^{n} 2^{k-1}=2^{n}-1\right\}$. Note that $1 \in S$ since

$$
\sum_{k=1}^{1} 2^{k-1}=2^{1-1}=1=2^{1}-1
$$

Now suppose $n \in S$. Then $\sum_{k=1}^{n} 2^{k-1}=2^{n}-1$, and

$$
\begin{aligned}
\sum_{k=1}^{n+1} 2^{k-1} & =\left(\sum_{k=1}^{n} 2^{k-1}\right)+2^{n} \\
& =\left(2^{n}-1\right)+2^{n}=2 \cdot 2^{n}-1=2^{n+1}-1 .
\end{aligned}
$$

Thus $n+1 \in S$ and by the Principle of Mathematical Induction, $S=\mathbb{N}$.

Problem 3.61: For each natural number n, let $f(n)$ denote the number of subsets of $\{1,2,3, \ldots, n\}$ that do not contain two consecutive numbers.
a) Find a pattern for $f(n)$. (Don't forget to count the empty set.)

First we consider $f(n)$ for small n.

n	subsets of desired form	$f(n)$
1	$\emptyset,\{1\}$	2
2	$\emptyset,\{1\},\{2\}$	3
3	$\emptyset,\{1\},\{2\},\{3\},\{1,3\}$	5
4	$\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,3\},\{1,4\},\{2,4\}$	8
5	$\emptyset,\{1\},\{2\},\{3\},\{3\},\{4\},\{5\},\{1,3\},\{1,4\},\{1,5\}$,	13

We observe that when $n=3,4,5, f(n)=f(n-1)+f(n-2)$. So we make this our guess.
b) Use the Second Principle of Mathematical Induction to prove that your pattern is correct.

Proof. Let $S=\{n \in \mathbb{N}: n \geq 3$ and $f(n)=f(n-1)+f(n-2)\}$. We can see from the above that $3 \in S$, since $f(3)=5=3+2=f(2)+f(1)$. Now suppose that $n \geq 3$ and $\{3,4,5, \ldots, n\} \subset S$. The subsets of $\{1,2,3, \ldots, n+1\}$ that do not contain two consecutive natural numbers are
(i) those subsets of $\{1,2,3, \ldots, n\}$ that do not contain two consecutive natural numbers, and
(ii) those subsets of $\{1,2,3, \ldots, n, n+1\}$ that contain $n+1$ and no consecutive natural numbers.

The number of subsets of $\{1,2,3, \ldots, n\}$ that do not contain two consecutive natural numbers is $f(n)$. The subsets of $\{1,2,3, \ldots, n, n+1\}$ that contain $n+1$ but do not contain two consecutive natural numbers are subsets of the form $A \cup\{n+1\}$, where A is a subset of $\{1,2,3, \ldots, n-1\}$ which does not contain two consecutive natural numbers. The number of such sets is $f(n-1)$. Therefore, $f(n+1)=$ $f(n)+f(n-1)$, so $n+1 \in S$. By the Extended Second Principle of Mathematical Induction, $S=\{3,4,5, \ldots\}$.

Problem 3.64: Let $f_{1}, f_{2}, f_{3}, \ldots$ be the Fibonacci numbers. Prove by induction that for each natural number n :
a) $f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}=f_{2 n}$.

Proof. Let $S=\left\{n \in \mathbb{N}: f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}=f_{2 n}\right\}$. Since $f_{1}=1$ and $f_{2}=1$, we have $f_{1}=f_{2 \cdot 1}$, which shows that $1 \in S$. Now assume that $n \in S$, which means $f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}=f_{2 n}$. Then

$$
\begin{aligned}
f_{1}+f_{3}+f_{5}+ & \cdots+f_{2 n-1}+f_{2(n+1)-1} \\
& =f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}+f_{2 n+1} \\
& =f_{2 n}+f_{2 n+1}=f_{2 n+2}=f_{2(n+1)},
\end{aligned}
$$

where the penultimate equality holds by definition of the Fibonacci sequence. Therefore, $n+1 \in S$. By the Principal of Mathematical Induction, $S=\mathbb{N}$, and we have that $f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}=f_{2 n}$ holds for all n.
b) $f_{2}+f_{4}+\ldots+f_{2 n}=f_{2 n+1}-1$.

Proof. Let $S=\left\{n \in \mathbb{N}: f_{2}+f_{4}+\ldots+f_{2 n}=f_{2 n+1}-1\right\}$. Then $1 \in S$, since $f_{2 \cdot 1}=1=2-1=f_{2 \cdot 1+1}-1$. Suppose $n \in S$. That is, $f_{2}+f_{4}+\ldots+f_{2 n}=f_{2 n+1}-1$. Then

$$
\begin{aligned}
f_{2}+f_{4}+\ldots+f_{2 n}+f_{2(n+1)} & =\left(f_{2 n+1}-1\right)+f_{2 n+2} \\
& =f_{2 n+3}-1=f_{2(n+1)+1}-1,
\end{aligned}
$$

where the second equality holds by definition of the Fibonacci sequence. Thus, $n+1 \in S$, and by the Principal of Mathematical Induction, $S=\mathbb{N}$.

Problem 3.71: The "name-one-thousand" game is a two-player game. The first player names 1, 2, or 3 . Thereafter, each player in turn adds 1 , 2 , or 3 to the previous total. The first player to name 1000 wins. Prove by induction that the second player has a winning strategy.
Proof. Let $S=\{n \in \mathbb{N}: 1000-4 n$ is a winning position for the second player. $\}$. $1 \in S$ because if the first player adds $k \in\{1,2,3\}$ to the value 996 , the second player responds by adding $4-k$, which is also in $\{1,2,3\}$, to bring the total to 1000 , thereby winning the game.

Assume $n \in \mathbb{N}$, where $n \leq 250$, that is, $1000-4 n$ is a winning position for the second player. Consider playing from the position $1000-4(n+1)$. If the first player adds $k \in\{1,2,3\}$ to the value $1000-4(n+1)$, then the second player responds by adding $4-k$, which is also in $\{1,2,3\}$, thereby bringing the total to $1000-4 n$, which by the inductive hypothesis is a winning position for that player. Hence $n+1 \in S$. Therefore, by the Principal of Mathematical Induction, $S=\mathbb{N}$ and in particular, $250 \in S$, so 0 (the starting position) is a winning position for the second player.

Problem 3.75: For each natural number i, let f_{i} be the ith Fibonacci number and let

$$
a_{i}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}}{\sqrt{5}}
$$

Prove by induction that for each $i \in \mathbb{N}, f_{i}=a_{i}$.

Proof. Let $S=\left\{i \in \mathbb{N}: f_{i}=a_{i}\right\}$. Note that

$$
a_{1}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{5}}=1=f_{1}
$$

and so $1 \in S$. We also have that

$$
a_{2}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}}{\sqrt{5}}=\frac{\frac{1+2 \sqrt{5}+5-1+2 \sqrt{5}-5}{4}}{\sqrt{5}}=1=f_{2}
$$

and so $2 \in S$. Now suppose $\{1, \ldots, i\} \subset S$ where $i>2$. We would like to show that $a_{i+1}=f_{i+1}$ and so $i+1 \in S$. Note that this is equivalent to proving

$$
\begin{equation*}
a_{i+1}=a_{i}+a_{i-1} \tag{1}
\end{equation*}
$$

because $i-1, i \in S$ implies that $a_{i-1}=f_{i-1}$ and $a_{i}=f_{i}$, and so (1) implies

$$
a_{i+1}=a_{i}+a_{i-1}=f_{i}+f_{i-1}=f_{i+1}
$$

by definition of the Fibonacci sequence. So if we can prove (1), then we're done.

To do this, we first make the following observations.

$$
\begin{gather*}
\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right)=-1 \tag{2}\\
1-\frac{1+\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2} \text { and } 1-\frac{1-\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2} . \tag{3}
\end{gather*}
$$

We also have that

$$
\begin{align*}
\frac{1+\sqrt{5}}{2}+1 & =\frac{1+\sqrt{5}}{2}-\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right) \\
& =\frac{1+\sqrt{5}}{2}\left(1-\frac{1-\sqrt{5}}{2}\right)=\left(\frac{1+\sqrt{5}}{2}\right)^{2} . \tag{4}
\end{align*}
$$

If we let $A=\frac{1+\sqrt{5}}{2}$ and $B=\frac{1-\sqrt{5}}{2}$, we may rewrite the above calculations as follows:

$$
\begin{gather*}
A B=-1 \tag{2'}\\
1-A=B \text { and } 1-B=A \tag{3'}\\
A+1=A+(-A B)=A(1-B)=A^{2} \tag{4'}
\end{gather*}
$$

Similarly, we could show that $B+1=B^{2}$. Given these identities, we consider the following:

$$
\begin{aligned}
a_{i}+a_{i-1} & =\frac{A^{i}-B^{i}}{\sqrt{5}}+\frac{A^{i-1}-B^{i-1}}{\sqrt{5}} \\
& =\frac{A^{i-1}(A+1)-B^{i-1}(B+1)}{\sqrt{5}} \\
& =\frac{A^{i-1} A^{2}-B^{i-1} B^{2}}{\sqrt{5}} \\
& =\frac{A^{i+1}-B^{i+1}}{\sqrt{5}}=a_{i+1}
\end{aligned}
$$

Therefore, since $a_{i}=f_{i}, a_{i-1}=f_{i-1}$, and $f_{i+1}=f_{i}+f_{i-1}$, we have $a_{i+1}=f_{i+1}$ and $i+1 \in S$. By the Second Principle of Mathematical Induction, $S=\mathbb{N}$.

Problem 3.83: A certain rare goblet is supposed to weigh 43 ounces. Explain how to check the weight of this goblet given a balance scale and 1000 each of 7-oz and 11-oz weights.
First note that

$$
\begin{aligned}
11 & =1(7)+4 \\
7 & =1(4)+3 \\
4 & =1(3)+1 \\
3 & =3(1)+0
\end{aligned}
$$

and so

$$
\begin{aligned}
1 & =4-1(3) \\
& =4-1[7-1(4)] \\
& =2(4)-1(7) \\
& =2[11-1(7)]-1(7) \\
& =2(11)-3(7)
\end{aligned}
$$

Then we have that

$$
43=43[2(11)-3(7)]=86(11)-129(7)
$$

So put $8611-\mathrm{oz}$ weights on one side of the scale, and put $1297-\mathrm{oz}$ weights together with the goblet on the other side of the scale.

Problem 3.84(a): Use the Euclidean algorithm to find gcd(901,952) and to find integers m and n such that $901 m+952 n=\operatorname{gcd}(901,952)$. Show your work.

6

$$
\begin{aligned}
952 & =1(901)+51 \\
901 & =17(51)+34 \\
51 & =1(34)+17 \\
34 & =2(17)+0
\end{aligned}
$$

So $\operatorname{gcd}(952,901)=17$, and

$$
\begin{aligned}
17 & =51-34 \\
& =51-[901-17(51)] \\
& =18(51)-901 \\
& =18(952-901)-901 \\
& =18(952)-19(901) .
\end{aligned}
$$

Problem 3.93: Suppose a, b, and c are integers with a and b not both 0 and that $d=\operatorname{gcd}(a, b)$. Prove that if d does not divide c, then the equation $a x+b y=c$ has no integer solutions for x and y.
Proof. Suppose a, b, and c are integers with a and b not both 0 and that $d=\operatorname{gcd}(a, b)$. Suppose x and y are integers satisfying the equation $a x+b y=c$. Since $d \mid a$, and $d \mid b$, there exist integers m and n such that $a=d m$ and $b=d n$. Then $d(m x+n y)=d m x+d n y=c$. Therefore $d \mid c$.

NOTE: The above is a proof of the contrapositive, NOT a proof by contradiction, of the desired statement.

