Math 109	Homework 6	T.A. Tai Melcher
UCSD Fall 2003		Office AP&M 6402E

This is not a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 3.41: Let $x_1 = 1$, and for n > 1, let $x_n = \sqrt{3x_{n-1} + 1}$. Prove that $x_n < 4$ for all $n \in \mathbb{N}$.

Proof. Let $x_1 = 1$, and for n > 1, let $x_n = \sqrt{3x_{n-1} + 1}$. Let $S = \{n \in \mathbb{N} : x_n < 4\}$. $1 \in S$ because $x_1 = 1 < 4$. Assume $n \in S$. Then

$$x_{n+1} = \sqrt{3x_n + 1} < \sqrt{3 \cdot 4 + 1} = \sqrt{13} < 4,$$

where the first inequality is due to the inductive hypothesis. Hence $n + 1 \in S$. Therefore, by the Principle of Mathematical Induction, $S = \mathbb{N}$.

Problem 3.51: Prove by induction that for each natural number n,

$$\sum_{k=1}^{n} 2^{k-1} = 2^n - 1.$$

Proof. Let $S = \{n \in \mathbb{N} : \sum_{k=1}^{n} 2^{k-1} = 2^n - 1\}$. Note that $1 \in S$ since

$$\sum_{k=1}^{1} 2^{k-1} = 2^{1-1} = 1 = 2^1 - 1.$$

Now suppose $n \in S$. Then $\sum_{k=1}^{n} 2^{k-1} = 2^n - 1$, and

$$\sum_{k=1}^{n+1} 2^{k-1} = \left(\sum_{k=1}^{n} 2^{k-1}\right) + 2^{n}$$
$$= (2^{n} - 1) + 2^{n} = 2 \cdot 2^{n} - 1 = 2^{n+1} - 1.$$

Thus $n+1 \in S$ and by the Principle of Mathematical Induction, $S = \mathbb{N}$.

Problem 3.61: For each natural number n, let f(n) denote the number of subsets of $\{1, 2, 3, ..., n\}$ that do not contain two consecutive numbers.

a) Find a pattern for f(n). (Don't forget to count the empty set.) First we consider f(n) for small n.

n	subsets of desired form	f(n)
1	$\emptyset, \{1\}$	2
2	$\emptyset, \{1\}, \{2\}$	3
3	$\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}$	5
4	$\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{2,4\}$	8
5		13

We observe that when n = 3, 4, 5, f(n) = f(n-1) + f(n-2). So we make this our guess.

b) Use the Second Principle of Mathematical Induction to prove that your pattern is correct.

Proof. Let $S = \{n \in \mathbb{N} : n \geq 3 \text{ and } f(n) = f(n-1) + f(n-2)\}$. We can see from the above that $3 \in S$, since f(3) = 5 = 3+2 = f(2)+f(1). Now suppose that $n \geq 3$ and $\{3, 4, 5, \ldots, n\} \subset S$. The subsets of $\{1, 2, 3, \ldots, n+1\}$ that do not contain two consecutive natural numbers are

- (i) those subsets of $\{1, 2, 3, ..., n\}$ that do not contain two consecutive natural numbers, and
- (ii) those subsets of $\{1, 2, 3, ..., n, n+1\}$ that contain n+1 and no consecutive natural numbers.

The number of subsets of $\{1, 2, 3, ..., n\}$ that do not contain two consecutive natural numbers is f(n). The subsets of $\{1, 2, 3, ..., n, n + 1\}$ that contain n + 1 but do not contain two consecutive natural numbers are subsets of the form $A \cup \{n + 1\}$, where A is a subset of $\{1, 2, 3, ..., n-1\}$ which does not contain two consecutive natural numbers. The number of such sets is f(n - 1). Therefore, f(n + 1) = f(n) + f(n - 1), so $n + 1 \in S$. By the Extended Second Principle of Mathematical Induction, $S = \{3, 4, 5, ...\}$.

Problem 3.64: Let f_1, f_2, f_3, \ldots be the Fibonacci numbers. Prove by induction that for each natural number n:

a) $f_1 + f_3 + f_5 + \dots + f_{2n-1} = f_{2n}$.

Proof. Let $S = \{n \in \mathbb{N} : f_1 + f_3 + f_5 + \dots + f_{2n-1} = f_{2n}\}$. Since $f_1 = 1$ and $f_2 = 1$, we have $f_1 = f_{2\cdot 1}$, which shows that $1 \in S$. Now assume that $n \in S$, which means $f_1 + f_3 + f_5 + \dots + f_{2n-1} = f_{2n}$. Then

$$f_1 + f_3 + f_5 + \dots + f_{2n-1} + f_{2(n+1)-1}$$

= $f_1 + f_3 + f_5 + \dots + f_{2n-1} + f_{2n+1}$
= $f_{2n} + f_{2n+1} = f_{2n+2} = f_{2(n+1)},$

where the penultimate equality holds by definition of the Fibonacci sequence. Therefore, $n + 1 \in S$. By the Principal of Mathematical Induction, $S = \mathbb{N}$, and we have that $f_1 + f_3 + f_5 + \cdots + f_{2n-1} = f_{2n}$ holds for all n.

b) $f_2 + f_4 + \ldots + f_{2n} = f_{2n+1} - 1.$

Proof. Let $S = \{n \in \mathbb{N} : f_2 + f_4 + \ldots + f_{2n} = f_{2n+1} - 1\}$. Then $1 \in S$, since $f_{2\cdot 1} = 1 = 2 - 1 = f_{2\cdot 1+1} - 1$. Suppose $n \in S$. That is, $f_2 + f_4 + \ldots + f_{2n} = f_{2n+1} - 1$. Then

$$f_2 + f_4 + \ldots + f_{2n} + f_{2(n+1)} = (f_{2n+1} - 1) + f_{2n+2}$$

= $f_{2n+3} - 1 = f_{2(n+1)+1} - 1$,

where the second equality holds by definition of the Fibonacci sequence. Thus, $n + 1 \in S$, and by the Principal of Mathematical Induction, $S = \mathbb{N}$.

Problem 3.71: The "name-one-thousand" game is a two-player game. The first player names 1, 2, or 3. Thereafter, each player in turn adds 1, 2, or 3 to the previous total. The first player to name 1000 wins. Prove by induction that the second player has a winning strategy.

Proof. Let $S = \{n \in \mathbb{N} : 1000 - 4n \text{ is a winning position for the second player.} \}$. $1 \in S$ because if the first player adds $k \in \{1, 2, 3\}$ to the value 996, the second player responds by adding 4 - k, which is also in $\{1, 2, 3\}$, to bring the total to 1000, thereby winning the game.

Assume $n \in \mathbb{N}$, where $n \leq 250$, that is, 1000 - 4n is a winning position for the second player. Consider playing from the position 1000 - 4(n + 1). If the first player adds $k \in \{1, 2, 3\}$ to the value 1000 - 4(n+1), then the second player responds by adding 4-k, which is also in $\{1, 2, 3\}$, thereby bringing the total to 1000 - 4n, which by the inductive hypothesis is a winning position for that player. Hence $n + 1 \in S$. Therefore, by the Principal of Mathematical Induction, $S = \mathbb{N}$ and in particular, $250 \in S$, so 0 (the starting position) is a winning position for the second player.

Problem 3.75: For each natural number i, let f_i be the *i*th Fibonacci number and let

$$a_i = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^i - \left(\frac{1-\sqrt{5}}{2}\right)^i}{\sqrt{5}}$$

Prove by induction that for each $i \in \mathbb{N}$, $f_i = a_i$.

Proof. Let $S = \{i \in \mathbb{N} : f_i = a_i\}$. Note that

$$a_1 = \frac{\left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1 = f_1$$

and so $1 \in S$. We also have that

$$a_2 = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^2 - \left(\frac{1-\sqrt{5}}{2}\right)^2}{\sqrt{5}} = \frac{\frac{1+2\sqrt{5}+5-1+2\sqrt{5}-5}{4}}{\sqrt{5}} = 1 = f_2$$

and so $2 \in S$. Now suppose $\{1, \ldots, i\} \subset S$ where i > 2. We would like to show that $a_{i+1} = f_{i+1}$ and so $i+1 \in S$. Note that this is equivalent to proving

(1)
$$a_{i+1} = a_i + a_{i-1}$$

because $i - 1, i \in S$ implies that $a_{i-1} = f_{i-1}$ and $a_i = f_i$, and so (1) implies

$$a_{i+1} = a_i + a_{i-1} = f_i + f_{i-1} = f_{i+1}$$

by definition of the Fibonacci sequence. So if we can prove (1), then we're done.

To do this, we first make the following observations.

(2)
$$\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right) = -1,$$

(3)
$$1 - \frac{1 + \sqrt{5}}{2} = \frac{1 - \sqrt{5}}{2}$$
 and $1 - \frac{1 - \sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}$

We also have that

(4)
$$\frac{1+\sqrt{5}}{2}+1 = \frac{1+\sqrt{5}}{2} - \left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right) \\ = \frac{1+\sqrt{5}}{2}\left(1-\frac{1-\sqrt{5}}{2}\right) = \left(\frac{1+\sqrt{5}}{2}\right)^2$$

If we let $A = \frac{1+\sqrt{5}}{2}$ and $B = \frac{1-\sqrt{5}}{2}$, we may rewrite the above calculations as follows:

(2') AB = -1

(3')
$$1 - A = B \text{ and } 1 - B = A$$

(4')
$$A + 1 = A + (-AB) = A(1 - B) = A^2.$$

4

Similarly, we could show that $B + 1 = B^2$. Given these identities, we consider the following:

$$a_{i} + a_{i-1} = \frac{A^{i} - B^{i}}{\sqrt{5}} + \frac{A^{i-1} - B^{i-1}}{\sqrt{5}}$$
$$= \frac{A^{i-1}(A+1) - B^{i-1}(B+1)}{\sqrt{5}}$$
$$= \frac{A^{i-1}A^{2} - B^{i-1}B^{2}}{\sqrt{5}}$$
$$= \frac{A^{i+1} - B^{i+1}}{\sqrt{5}} = a_{i+1}.$$

Therefore, since $a_i = f_i$, $a_{i-1} = f_{i-1}$, and $f_{i+1} = f_i + f_{i-1}$, we have $a_{i+1} = f_{i+1}$ and $i+1 \in S$. By the Second Principle of Mathematical Induction, $S = \mathbb{N}$.

Problem 3.83: A certain rare goblet is supposed to weigh 43 ounces. Explain how to check the weight of this goblet given a balance scale and 1000 each of 7-oz and 11-oz weights.

First note that

$$11 = 1(7) + 4$$

$$7 = 1(4) + 3$$

$$4 = 1(3) + 1$$

$$3 = 3(1) + 0,$$

and so

$$1 = 4 - 1(3)$$

= 4 - 1[7 - 1(4)]
= 2(4) - 1(7)
= 2[11 - 1(7)] - 1(7)
= 2(11) - 3(7).

Then we have that

$$43 = 43[2(11) - 3(7)] = 86(11) - 129(7)$$

So put 86 11-oz weights on one side of the scale, and put 129 7-oz weights together with the goblet on the other side of the scale.

Problem 3.84(a): Use the Euclidean algorithm to find gcd(901,952) and to find integers m and n such that 901m + 952n = gcd(901,952). Show your work.

952 = 1(901) + 51901 = 17(51) + 3451 = 1(34) + 1734 = 2(17) + 0

So gcd(952,901) = 17, and

17 = 51 - 34= 51 - [901 - 17(51)] = 18(51) - 901 = 18(952 - 901) - 901 = 18(952) - 19(901).

Problem 3.93: Suppose a, b, and c are integers with a and b not both 0 and that d = gcd(a, b). Prove that if d does not divide c, then the equation ax + by = c has no integer solutions for x and y.

Proof. Suppose a, b, and c are integers with a and b not both 0 and that d = gcd(a, b). Suppose x and y are integers satisfying the equation ax + by = c. Since d|a, and d|b, there exist integers m and n such that a = dm and b = dn. Then d(mx + ny) = dmx + dny = c. Therefore d|c.

NOTE: The above is a proof of the contrapositive, NOT a proof by contradiction, of the desired statement.