Math 109
UCSD Fall 2003

Homework 8

This may not be a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 4.1: Prove that the ordered pair $(17,17)=\{\{17\}\}$.
Proof. By definition, the ordered pair $(17,17)$ is the set $\{\{17\},\{17,17\}\}$. Since $\{17,17\}=\{17\},\{\{17\},\{17,17\}\}=\{17\}$.

Problem 4.2: Prove that $(a, b)=(c, d)$ iff $a=c$ and $b=d$.

Proof.

(\Leftarrow) Suppose $a=c$ and $b=d$. Then $\{a\}=\{c\}$ and $\{a, b\}=\{c, d\}$. Therefore,

$$
(a, b)=\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}=(c, d) .
$$

(\Rightarrow) Now suppose $(a, b)=(c, d)$. Then $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$. Thus $\{a\}=\{c\}$ or $\{a\}=\{c, d\}$, and in either case, $a=c$. Also, $\{a, b\}=\{c\}$ or $\{a, b\}=\{c, d\}$. If $\{a, b\}=\{c\}$, then $a=b=c$ and $\{c, d\}=\{c\}$ so that $b=c=d$. If $\{a, b\}=\{c, d\}$, then $b=c$ or $b=d$. Suppose that $b=c$. Then $\{c, d\}=\{a, b\}=\{c\}$ and so $b=c=d$. In all cases, $a=c$ and $b=d$.

Problem 4.4: Sketch the graph of each of the following relations. For each relation, state its domain and range.
a) $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+y^{2}=16\right\}$
$\operatorname{Dom}(S)=\{x \in \mathbb{R}:|x| \leq 4\}$ and $\operatorname{Ran}(S)=\{y \in \mathbb{R}:|y| \leq 4\}$
b) $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y^{2}=2 x\right\}$
$\operatorname{Dom}(S)=\{x \in \mathbb{R}: x \geq 0\}$ and $\operatorname{Ran}(S)=\mathbb{R}$
c) $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}=2 y^{2}\right\}$
$\operatorname{Dom}(S)=\mathbb{R}$ and $\operatorname{Ran}(S)=\mathbb{R}$
d) $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}=y^{2}\right\}$
$\operatorname{Dom}(S)=\mathbb{R}$ and $\operatorname{Ran}(S)=\mathbb{R}$
e) $S=\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x| \leq 1$ and $|y|>3\}$
$\operatorname{Dom}(S)=\{x \in \mathbb{R}:|x| \leq 1\}$ and $\operatorname{Ran}(S)=\{y \in \mathbb{R}:|y|>3\}$
f) $S=\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x|=1$ and $3<y \leq 5\}$
$\operatorname{Dom}(S)=\{x \in \mathbb{R}:|x|=1\}=\{-1,1\}$ and $\operatorname{Ran}(S)=\{y \in \mathbb{R}: 3<$ $y \leq 5\}$

Problem 4.12: Let $\mathcal{A}=\left\{A_{i}: i \in \Lambda\right\}$ be a collection of relations and suppose that x belongs to the domain of A_{i} for each $i \in \Lambda$. Prove that
a) $\left(\cup\left\{A_{i}: i \in \Lambda\right\}\right)[x]=\left(\cup\left\{A_{i}[x]: i \in \Lambda\right\}\right)$

Proof.

$$
\begin{aligned}
y \in\left(\cup\left\{A_{i}: i \in \Lambda\right\}\right)[x] & \Longleftrightarrow(x, y) \in \cup\left\{A_{i}: i \in \Lambda\right\} \\
& \Longleftrightarrow(x, y) \in A_{i} \text { for some } i \in \Lambda \\
& \Longleftrightarrow y \in A_{i}[x] \text { for some } i \in \Lambda \\
& \Longleftrightarrow y \in\left(\cup\left\{A_{i}[x]: i \in \Lambda\right\}\right) .
\end{aligned}
$$

Thus, $\left(\cup\left\{A_{i}: i \in \Lambda\right\}\right)[x]=\left(\cup\left\{A_{i}[x]: i \in \Lambda\right\}\right)$.
b) $\left(\cap\left\{A_{i}: i \in \Lambda\right\}\right)[x]=\left(\cap\left\{A_{i}[x]: i \in \Lambda\right\}\right)$

Proof.

$$
\begin{aligned}
y \in\left(\cap\left\{A_{i}: i \in \Lambda\right\}\right)[x] & \Longleftrightarrow(x, y) \in \cap\left\{A_{i}: i \in \Lambda\right\} \\
& \Longleftrightarrow(x, y) \in A_{i} \text { for all } i \in \Lambda \\
& \Longleftrightarrow y \in A_{i}[x] \text { for all } i \in \Lambda \\
& \Longleftrightarrow y \in\left(\cap\left\{A_{i}[x]: i \in \Lambda\right\}\right) .
\end{aligned}
$$

Thus, $\left(\cap\left\{A_{i}: i \in \Lambda\right\}\right)[x]=\left(\cap\left\{A_{i}[x]: i \in \Lambda\right\}\right)$.
Problem 4.13: Let \mathbb{N} denote the set of all natural numbers. Let $R=\{(a, b) \in \mathbb{N} \times \mathbb{N}$: a divides b $\}$. List five members of $R[7]$, and list five members of $R[14]$. For which $n \in \mathbb{N}$ is it true that $R[n]=\mathbb{N}$?
$7,14,21,28,35 \in R[7]$
$14,28,42,56,70 \in R[14]$
Note that $R[n]=\mathbb{N}$ iff n divides every element of \mathbb{N}. Thus, the only natural number for which this is true is $n=1$.

Problem 3.25: Let R be a relation such that $R^{-1} \subseteq R$. Must R be symmetric? Prove your answer.
Yes.
Proof. Suppose R is a relation such that $R^{-1} \subseteq R$. We wish to show that $R \subseteq R^{-1}$, and thus $R=R^{-1}$ and so is symmetric. So let $(x, y) \in R$. Then $(y, x) \in R^{-1}$. Since $R^{-1} \subseteq R$, we then have that $(y, x) \in R$. Hence, $(x, y) \in R^{-1}$ and $R \subseteq R^{-1}$ as desired.

