MAT	гн 1	09
UCSD	Fall	2003

Homework 8

This may not be a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 4.1: *Prove that the ordered pair* $(17, 17) = \{\{17\}\}$.

Proof. By definition, the ordered pair (17, 17) is the set $\{\{17\}, \{17, 17\}\}$. Since $\{17, 17\} = \{17\}, \{\{17\}, \{17, 17\}\} = \{17\}$.

Problem 4.2: Prove that (a, b) = (c, d) iff a = c and b = d.

Proof.

(\Leftarrow) Suppose a = c and b = d. Then $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$. Therefore,

$$(a,b) = \{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\} = (c,d).$$

(⇒) Now suppose (a, b) = (c, d). Then $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. Thus $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$, and in either case, a = c. Also, $\{a, b\} = \{c\}$ or $\{a, b\} = \{c, d\}$. If $\{a, b\} = \{c\}$, then a = b = c and $\{c, d\} = \{c\}$ so that b = c = d. If $\{a, b\} = \{c, d\}$, then b = c or b = d. Suppose that b = c. Then $\{c, d\} = \{a, b\} = \{c\}$ and so b = c = d. In all cases, a = c and b = d.

Problem 4.4: Sketch the graph of each of the following relations. For each relation, state its domain and range.

a) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 16\}$ $Dom(S) = \{x \in \mathbb{R} : |x| \le 4\}$ and $Ran(S) = \{y \in \mathbb{R} : |y| \le 4\}$ b) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y^2 = 2x\}$ $Dom(S) = \{x \in \mathbb{R} : x \ge 0\}$ and $Ran(S) = \mathbb{R}$ c) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 = 2y^2\}$ $Dom(S) = \mathbb{R}$ and $Ran(S) = \mathbb{R}$ d) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 = y^2\}$ $Dom(S) = \mathbb{R}$ and $Ran(S) = \mathbb{R}$ e) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| \le 1 \text{ and } |y| > 3\}$ $Dom(S) = \{x \in \mathbb{R} : |x| \le 1\}$ and $Ran(S) = \{y \in \mathbb{R} : |y| > 3\}$ f) $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| = 1 \text{ and } 3 < y \le 5\}$ $Dom(S) = \{x \in \mathbb{R} : |x| = 1\} = \{-1, 1\}$ and $Ran(S) = \{y \in \mathbb{R} : 3 < y \le 5\}$

Problem 4.12: Let $\mathcal{A} = \{A_i : i \in \Lambda\}$ be a collection of relations and suppose that x belongs to the domain of A_i for each $i \in \Lambda$. Prove that **a)** $(\cup \{A_i : i \in \Lambda\})[x] = (\cup \{A_i[x] : i \in \Lambda\})$

Proof.

$$y \in (\cup \{A_i : i \in \Lambda\})[x] \iff (x, y) \in \cup \{A_i : i \in \Lambda\}$$
$$\iff (x, y) \in A_i \text{ for some } i \in \Lambda$$
$$\iff y \in A_i[x] \text{ for some } i \in \Lambda$$
$$\iff y \in (\cup \{A_i[x] : i \in \Lambda\}).$$
Thus, $(\cup \{A_i : i \in \Lambda\})[x] = (\cup \{A_i[x] : i \in \Lambda\}).$
b) $(\cap \{A_i : i \in \Lambda\})[x] = (\cap \{A_i[x] : i \in \Lambda\}).$
b) $(\cap \{A_i : i \in \Lambda\})[x] = (\cap \{A_i[x] : i \in \Lambda\}).$
b) $(\cap \{A_i : i \in \Lambda\})[x] \iff (x, y) \in \cap \{A_i : i \in \Lambda\}$
$$\iff (x, y) \in A_i \text{ for all } i \in \Lambda$$
$$\iff y \in A_i[x] \text{ for all } i \in \Lambda$$
$$\iff y \in (\cap \{A_i[x] : i \in \Lambda\}).$$

Thus, $(\cap \{A_i : i \in \Lambda\})[x] = (\cap \{A_i[x] : i \in \Lambda\}).$

Problem 4.13: Let \mathbb{N} denote the set of all natural numbers. Let $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} : a \text{ divides } b\}$. List five members of R[7], and list five members of R[14]. For which $n \in \mathbb{N}$ is it true that $R[n] = \mathbb{N}$?

7, 14, 21, 28, $35 \in R[7]$ 14, 28, 42, 56, $70 \in R[14]$ Note that $R[n] = \mathbb{N}$ iff *n* divides every element of \mathbb{N} . Thus, the only natural number for which this is true is n = 1.

Problem 3.25: Let R be a relation such that $R^{-1} \subseteq R$. Must R be symmetric? Prove your answer.

Yes.

Proof. Suppose R is a relation such that $R^{-1} \subseteq R$. We wish to show that $R \subseteq R^{-1}$, and thus $R = R^{-1}$ and so is symmetric. So let $(x, y) \in R$. Then $(y, x) \in R^{-1}$. Since $R^{-1} \subseteq R$, we then have that $(y, x) \in R$. Hence, $(x, y) \in R^{-1}$ and $R \subseteq R^{-1}$ as desired.

 $\mathbf{2}$