
Math 109 Homework 9 T.A. Tai Melcher
UCSD Fall 2003 Office AP&M 6402E

This may not be a complete list of the solutions. Problems with suffi-
cient solutions in the back of the text were not included.

Problem 4.26: Let R = {(a, b) ∈ R×R : there is an integer k such that a−
b = 2kπ}.

a) Prove that R is an equivalence relation on R.

Proof. To prove R is an equivalence relation, we must prove R is
reflexive, symmetric, and transitive. So let a, b, c ∈ R. Then a − a =
0 = 0 · 2π where 0 ∈ Z. Thus (a, a) ∈ R and R is reflexive.

Now suppose (a, b) ∈ R. Then there exists k ∈ Z such that a− b =
2kπ. Then b− a = −2kπ = 2(−k)π, and −k ∈ Z. Thus (b, a) ∈ R and
R is symmetric.

If (a, b) ∈ R and (b, c) ∈ R, then there exist integers k and n such
that a− b = 2kπ and b− c = 2nπ. Then

a− c = (a− b) + (b− c) = 2kπ + 2nπ = 2(k + n)π

where k + n ∈ Z. Thus (a, c) ∈ R and R is transitive. �

b) List three members of
[

π
4

]
.

The elements of
[

π
4

]
are real numbers b such that π

4
− b = 2kπ for

some integer k. That is, b = π
4
− 2kπ for some integer k. Thus, we

may generate elements of the equivalence class
[

π
4

]
simply by plugging

integers into the previous equation. For example, for k = 0, 1, 2, we
have π

4
, π

4
− 2π = −7π

4
, and π

4
− 4π = −15π

4
are elements of

[
π
4

]
.

c) List three members of [1].
As in part b) above, we have 1, 1-2π, and 1-4π are three members of
[1].

d) Which numbers, if any, belong to
[

π
4

]
∩ [1]?

None. The intersection of these equivalence classes is empty. To see
this, suppose there exists some x ∈

[
π
4

]
∩ [1]. Then there exist some

integers k and n such that π
4
− 2kπ = x and 1− 2nπ = x. Thus,

π

4
− 2kπ = 1− 2nπ.

That is, k − n = 1
2π

(
π
4
− 1

)
. However, k − n is clearly an integer and

the right hand side of this equation is not an integer. Thus, we have a
contradiction, and there exists no such element x that belongs to both
equivalence classes.
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Problem 4.27: Let Q be the set of all rational numbers, and let R be
the set of ordered pairs (x, y) in Q × Q such that when x and y are
represented by fractions in lowest terms these fractions have the same
denominator.

(a) Prove that R is an equivalence relation on Q.

Proof. Let x, y, z ∈ Q. Then there exist some integers m, n, p, q, j, k
such that gcd(m, n) = 1, gcd(p, q) = 1 and gcd(j, k) = 1, and x = m

n
,

y = pq, and z = j
k
.

Certainly, n = n and so (x, x) ∈ R. Thus R is reflexive.
Suppose (x, y) ∈ R. Then n = q implies q = n and so (y, x) ∈ R.

Thus R is symmetric.
Now suppose (x, y) ∈ R and (y, z) ∈ R. Then n = q and q = k

implies n = k and so (x, z) ∈ R. Therefore R is transitive. �

(b) Prove that [1/6] = [5/6].

Proof. y ∈ [1/6] iff there exists some integer n such that gcd(n, 6) = 1
and y = n/6 iff y ∈ [5/6]. �

(c) Are [4/6] and [5/6] disjoint sets? Prove your answer.

Yes. [4/6] and [5/6] are disjoint because 4/6 and 5/6 have different
denominators when represented in lowest terms.

Problem 4.36: For any two points (a, b) and (c, d) of the plane, define
(a, b) ∼= (c, d) provided that a2 + b2 = c2 + d2.

a) Prove that ∼= is an eqivalence relation on R× R.

Proof. Let (a, b), (c, d), (e, f) ∈ R×R. Clearly, a2 + b2 = a2 + b2 and
so (a, b) ∼= (a, b) and ∼= is reflexive.

Now suppose (a, b) ∼= (c, d). Then a2 + b2 = c2 + d2 implies c2 + d2 =
a2 + b2. So (c, d) ∼= (a, b) and ∼= is symmetric.

If (a, b) ∼= (c, d) and (c, d) ∼= (e, f), then we have

a2 + b2 = c2 + d2 = e2 + f 2

implies (a, b) ∼= (e, f) and ∼= is transitive. �

b) List all members of [(0, 0)].

[(0, 0)] = {(0, 0)} because there are no two non-zero real values a and
b such that a2 + b2 = 0.

c) Give a geometric description of [(5, 11)].

[(5, 11)] = {(a, b) ∈ R × R : a2 + b2 = 146} is the set of all points on
the circle with center at the origin and radius

√
146.
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Problem 4.45: For some n > 1, let S denote the set of all real n× n
matrices with real entries and let T denote the set of all invertible
n×n matrices. Define a relation ∼ on S by A ∼ B provided there is a
matrix M ∈ T such that A = MBM−1. Prove that ∼ is an equivalence
relation on S.

Proof. Let A, B, C ∈ S. Note that the identity matrix I = In

(the n× n matrix with 1’s on the diagonal and 0’s everywhere else) is
certainly invertible, and that IAI−1 = IAI = A implies A ∼ A. So ∼
is reflexive on S.

Now suppose A ∼ B. Then there exists M ∈ T such that A =
MBM−1. Recall that for any invertible matrix M , M−1 is also invert-
ible and has inverse (M−1)−1 = M . Thus,

M−1AM = M−1
(
MBM−1

)
M =

(
M−1M

)
B

(
M−1M

)
= B,

and so B = M−1AM with M−1 ∈ T implies B ∼ A. Thus, ∼ is
symmetric on S.

If A ∼ B and B ∼ C, then there exist invertible matrices M and N
such that A = MBM−1 and B = NCN−1. Thus,

A = MBM−1 = M
(
NCN−1

)
M−1 = (MN) C (MN)−1

since the product of two invertible matrices is invertible and (MN)−1 =
N−1M−1. Thus, A ∼ C and ∼ is transitive. �

Problem 4.62: Prove Theorem 4.8: If n ∈ N, congruence modulo n
is an equivalence relation on the set of integers.

Proof. Let n ∈ N and a, b, c ∈ Z. Then a − a = 0 and 0 is divisible
by n. So a ≡ a mod n, and the relation is reflexive.

Now suppose a ≡ b mod n. Then n|(a−b) so there exists an integer
k such that a− b = kn. Then b−a = −kn where −k is an integer, and
so n|b− a and b ≡ a mod n. Thus, the relation is symmetric.

If a ≡ b mod n and b ≡ c mod n, then n|(a−b) and n|(b−c). Note
that a− c = (a− b)+(b− c) and so is the sum of two terms divisible by
n. Thus n|(a− c), and a ≡ c mod n implies the relation is transitive.
�

Problem 4.64: For the equivalence relation a ≡ b mod 9 we have
that for each natural number n, [10n] = [1].

Proof. Since the given relation is an equivalence relation, it suffices
to show that for each natural number n, 10n ≡ 1 mod 9.
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Let S = {n ∈ N : 9|(10n − 1)}. 1 ∈ S because 9 divides 101 − 1.
Assume n ∈ S. Then 9 divides 10n − 1, and so there exists an integer
k such that 10n − 1 = 9k.

10n+1 − 1 = 10 · 10n − 1

= 9 · 10n + 10n − 1

= 9 · 10n + 9k

= 9(10n + k),

where the third inequality is due to the statement derived from the
induction hypothesis. Hence n + 1 ∈ S. Therefore, by the Principle of
Mathematical Induction, S = N. �


