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This may not be a complete list of the solutions. Problems with suffi-
cient solutions in the back of the text were not included.

Problem 4.26: Let R = {(a,b) € RxR : there is an integer k such that a—
b=2kr}.

a) Prove that R is an equivalence relation on R.

Proof. To prove R is an equivalence relation, we must prove R is
reflexive, symmetric, and transitive. So let a,b,c € R. Then a —a =
0=0-27 where 0 € Z. Thus (a,a) € R and R is reflexive.

Now suppose (a,b) € R. Then there exists k € Z such that a — b =
2km. Then b —a = —2km = 2(—k)7m, and —k € Z. Thus (b,a) € R and
R is symmetric.

If (a,b) € R and (b,c) € R, then there exist integers k and n such
that @ — b = 2km and b — ¢ = 2nm. Then

a—c=(a—=b)+(b—c)=2kr+2nr =2(k+n)m
where k +n € Z. Thus (a,c) € R and R is transitive. [ ]

b) List three members of [%].
The elements of [ﬂ are real numbers b such that i b = 2krw for

some integer k. That is, b = 7 — 2k7 for some integer k. Thus, we
may generate elements of the equivalence class [ﬂ simply by plugging

integers into the previous equation. For example, for £ = 0,1,2, we

T — _In T _ — _ 15w ™
have 7, 7 — 27 = —7F, and 7 — 47 = — =% are elements of [4].

c) List three members of [1].
As in part b) above, we have 1, 1-27, and 1-47 are three members of

[1].

d) Which numbers, if any, belong to [Z] N [1]?

None. The intersection of these equivalence classes is empty. To see

this, suppose there exists some x € [%] N [1]. Then there exist some

integers k and n such that 7 — 2km =z and 1 — 2n7 = z. Thus,

T
— — 2k =1-2nm.
4
That is, k —n = i (% — 1). However, k — n is clearly an integer and
the right hand side of this equation is not an integer. Thus, we have a
contradiction, and there exists no such element x that belongs to both

equivalence classes.
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Problem 4.27: Let Q be the set of all rational numbers, and let R be
the set of ordered pairs (z,y) in Q x Q such that when x and y are
represented by fractions in lowest terms these fractions have the same
denominator.

(a) Prove that R is an equivalence relation on Q.
Proof. Let x,y,z € Q. Then there exist some integers m,n,p,q, 7, k
such that ged(m,n) = 1, ged(p,q) = 1 and ged(j, k) = 1, and z = =,
y =pq, and z = %

Certainly, n = n and so (z,z) € R. Thus R is reflexive.

Suppose (z,y) € R. Then n = ¢ implies ¢ = n and so (y,z) € R.
Thus R is symmetric.

Now suppose (z,y) € R and (y,z) € R. Then n = g and ¢ = k
implies n = k and so (x, z) € R. Therefore R is transitive. |

(b) Prove that [1/6] = [5/6].

Proof. y € [1/6] iff there exists some integer n such that ged(n,6) =1
and y =n/6 iff y € [5/6]. |

(c) Are [4/6] and [5/6] disjoint sets? Prove your answer.

Yes. [4/6] and [5/6] are disjoint because 4/6 and 5/6 have different
denominators when represented in lowest terms.

Problem 4.36: For any two points (a,b) and (c,d) of the plane, define
(a,b) = (c,d) provided that a® + V* = ¢* + d>.

a) Prove that = is an eqivalence relation on R x R.
Proof. Let (a,b),(c,d), (e, f) € R x R. Clearly, a* + b* = a® + b* and
o (a,b) = (a,b) and = is reflexive.

Now suppose (a,b) = (¢, d). Then a®+b*> = ¢* + d? implies ¢® +d* =
a’*+b%. So (¢,d) = (a,b) and = is symmetric.

If (a,b) = (¢,d) and (¢, d) = (e, f), then we have

d+V=c+d*=e+ f

implies (a,b) = (e, f) and = is transitive. [

b) List all members of [(0,0)].

[(0,0)] = {(0,0)} because there are no two non-zero real values a and
b such that a? + b = 0.

c) Give a geometric description of [(5,11)].

[(5,11)] = {(a,b) € R x R : a® + b* = 146} is the set of all points on
the circle with center at the origin and radius 1/146.
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Problem 4.45: For some n > 1, let S denote the set of all real n x n
matrices with real entries and let T denote the set of all invertible
n x n matrices. Define a relation ~ on S by A ~ B provided there is a
matrizc M € T such that A = MBM™'. Prove that ~ is an equivalence
relation on S.

Proof. Let A, B,C € S. Note that the identity matrix I = I,
(the n x n matrix with 1’s on the diagonal and 0’s everywhere else) is
certainly invertible, and that JAI~' = JAI = A implies A ~ A. So ~
is reflexive on S.

Now suppose A ~ B. Then there exists M € T such that A =
MBM~!. Recall that for any invertible matrix M, M~! is also invert-
ible and has inverse (M ~!)~! = M. Thus,

M7'AM =M™ (MBM™ )M = (M~'M)B (M~'M) = B,

and so B = M~*AM with M~! € T implies B ~ A. Thus, ~ is
symmetric on S.

If A~ B and B ~ C, then there exist invertible matrices M and N
such that A= MBM~! and B= NCN~!. Thus,

A=MBM™ =M (NCN)M'=(MN)C(MN)™

since the product of two invertible matrices is invertible and (M N)~! =
N='M~1. Thus, A ~ C and ~ is transitive. |

Problem 4.62: Prove Theorem 4.8: If n € N, congruence modulo n
is an equivalence relation on the set of integers.

Proof. Let n € N and a,b,c € Z. Then a — a = 0 and 0 is divisible
by n. So a = a mod n, and the relation is reflexive.

Now suppose a = b mod n. Then n|(a—b) so there exists an integer
k such that a —b = kn. Then b—a = —kn where —F is an integer, and
so nlb —a and b = a mod n. Thus, the relation is symmetric.

Ifa=b mod n and b = ¢ mod n, then n|(a—0b) and n|(b—c). Note
that a —c = (a—b) + (b—c) and so is the sum of two terms divisible by
n. Thus n|(a — ¢), and a = ¢ mod n implies the relation is transitive.

Problem 4.64: For the equivalence relation a = b mod 9 we have
that for each natural number n, [10"] = [1].

Proof. Since the given relation is an equivalence relation, it suffices
to show that for each natural number n, 10" =1 mod 9.



Let S = {neN:9[(10" —1)}. 1 € S because 9 divides 10" — 1.
Assume n € S. Then 9 divides 10™ — 1, and so there exists an integer
k such that 10" — 1 = 9k.

10" —1=10-10" -1
=9-10"+10" -1
=9-10" 4+ 9k
=9(10" + k),
where the third inequality is due to the statement derived from the

induction hypothesis. Hence n 4+ 1 € S. Therefore, by the Principle of
Mathematical Induction, S = N. |



