Math 109
UCSD Fall 2003

Homework 9

This may not be a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 4.26: Let $R=\{(a, b) \in \mathbb{R} \times \mathbb{R}$ : there is an integer $k$ such that $a-$ $b=2 k \pi\}$.
a) Prove that $R$ is an equivalence relation on $\mathbb{R}$.

Proof. To prove $R$ is an equivalence relation, we must prove $R$ is reflexive, symmetric, and transitive. So let $a, b, c \in \mathbb{R}$. Then $a-a=$ $0=0 \cdot 2 \pi$ where $0 \in \mathbb{Z}$. Thus $(a, a) \in R$ and $R$ is reflexive.

Now suppose $(a, b) \in R$. Then there exists $k \in \mathbb{Z}$ such that $a-b=$ $2 k \pi$. Then $b-a=-2 k \pi=2(-k) \pi$, and $-k \in \mathbb{Z}$. Thus $(b, a) \in R$ and $R$ is symmetric.

If $(a, b) \in R$ and $(b, c) \in R$, then there exist integers $k$ and $n$ such that $a-b=2 k \pi$ and $b-c=2 n \pi$. Then

$$
a-c=(a-b)+(b-c)=2 k \pi+2 n \pi=2(k+n) \pi
$$

where $k+n \in \mathbb{Z}$. Thus $(a, c) \in R$ and $R$ is transitive.
b) List three members of $\left[\frac{\pi}{4}\right]$.

The elements of $\left[\frac{\pi}{4}\right]$ are real numbers $b$ such that $\frac{\pi}{4}-b=2 k \pi$ for some integer $k$. That is, $b=\frac{\pi}{4}-2 k \pi$ for some integer $k$. Thus, we may generate elements of the equivalence class $\left[\frac{\pi}{4}\right]$ simply by plugging integers into the previous equation. For example, for $k=0,1,2$, we have $\frac{\pi}{4}, \frac{\pi}{4}-2 \pi=-\frac{7 \pi}{4}$, and $\frac{\pi}{4}-4 \pi=-\frac{15 \pi}{4}$ are elements of $\left[\frac{\pi}{4}\right]$.
c) List three members of [1].

As in part b) above, we have $1,1-2 \pi$, and $1-4 \pi$ are three members of [1].
d) Which numbers, if any, belong to $\left[\frac{\pi}{4}\right] \cap[1]$ ?

None. The intersection of these equivalence classes is empty. To see this, suppose there exists some $x \in\left[\frac{\pi}{4}\right] \cap[1]$. Then there exist some integers $k$ and $n$ such that $\frac{\pi}{4}-2 k \pi=x$ and $1-2 n \pi=x$. Thus,

$$
\frac{\pi}{4}-2 k \pi=1-2 n \pi
$$

That is, $k-n=\frac{1}{2 \pi}\left(\frac{\pi}{4}-1\right)$. However, $k-n$ is clearly an integer and the right hand side of this equation is not an integer. Thus, we have a contradiction, and there exists no such element $x$ that belongs to both equivalence classes.

Problem 4.27: Let $\mathbb{Q}$ be the set of all rational numbers, and let $R$ be the set of ordered pairs $(x, y)$ in $\mathbb{Q} \times \mathbb{Q}$ such that when $x$ and $y$ are represented by fractions in lowest terms these fractions have the same denominator.
(a) Prove that $R$ is an equivalence relation on $\mathbb{Q}$.

Proof. Let $x, y, z \in \mathbb{Q}$. Then there exist some integers $m, n, p, q, j, k$ such that $\operatorname{gcd}(m, n)=1, \operatorname{gcd}(p, q)=1$ and $\operatorname{gcd}(j, k)=1$, and $x=\frac{m}{n}$, $y=p q$, and $z=\frac{j}{k}$.

Certainly, $n=n$ and so $(x, x) \in R$. Thus $R$ is reflexive.
Suppose $(x, y) \in R$. Then $n=q$ implies $q=n$ and so $(y, x) \in R$. Thus $R$ is symmetric.

Now suppose $(x, y) \in R$ and $(y, z) \in R$. Then $n=q$ and $q=k$ implies $n=k$ and so $(x, z) \in R$. Therefore $R$ is transitive.
(b) Prove that $[1 / 6]=[5 / 6]$.

Proof. $y \in[1 / 6]$ iff there exists some integer $n$ such that $\operatorname{gcd}(n, 6)=1$ and $y=n / 6$ iff $y \in[5 / 6]$.
(c) Are $[4 / 6]$ and $[5 / 6]$ disjoint sets? Prove your answer.

Yes. [4/6] and [5/6] are disjoint because $4 / 6$ and $5 / 6$ have different denominators when represented in lowest terms.

Problem 4.36: For any two points $(a, b)$ and $(c, d)$ of the plane, define $(a, b) \cong(c, d)$ provided that $a^{2}+b^{2}=c^{2}+d^{2}$.
a) Prove that $\cong$ is an eqivalence relation on $\mathbb{R} \times \mathbb{R}$.

Proof. Let $(a, b),(c, d),(e, f) \in \mathbb{R} \times \mathbb{R}$. Clearly, $a^{2}+b^{2}=a^{2}+b^{2}$ and so $(a, b) \cong(a, b)$ and $\cong$ is reflexive.

Now suppose $(a, b) \cong(c, d)$. Then $a^{2}+b^{2}=c^{2}+d^{2}$ implies $c^{2}+d^{2}=$ $a^{2}+b^{2}$. So $(c, d) \cong(a, b)$ and $\cong$ is symmetric.

If $(a, b) \cong(c, d)$ and $(c, d) \cong(e, f)$, then we have

$$
a^{2}+b^{2}=c^{2}+d^{2}=e^{2}+f^{2}
$$

implies $(a, b) \cong(e, f)$ and $\cong$ is transitive.
b) List all members of $[(0,0)]$.
$[(0,0)]=\{(0,0)\}$ because there are no two non-zero real values $a$ and $b$ such that $a^{2}+b^{2}=0$.
c) Give a geometric description of $[(5,11)]$.
$[(5,11)]=\left\{(a, b) \in \mathbb{R} \times \mathbb{R}: a^{2}+b^{2}=146\right\}$ is the set of all points on the circle with center at the origin and radius $\sqrt{146}$.

Problem 4.45: For some $n>1$, let $S$ denote the set of all real $n \times n$ matrices with real entries and let $T$ denote the set of all invertible $n \times n$ matrices. Define a relation $\sim$ on $S$ by $A \sim B$ provided there is a matrix $M \in T$ such that $A=M B M^{-1}$. Prove that $\sim$ is an equivalence relation on $S$.

Proof. Let $A, B, C \in S$. Note that the identity matrix $I=I_{n}$ (the $n \times n$ matrix with 1 's on the diagonal and 0 's everywhere else) is certainly invertible, and that $I A I^{-1}=I A I=A$ implies $A \sim A$. So $\sim$ is reflexive on $S$.

Now suppose $A \sim B$. Then there exists $M \in T$ such that $A=$ $M B M^{-1}$. Recall that for any invertible matrix $M, M^{-1}$ is also invertible and has inverse $\left(M^{-1}\right)^{-1}=M$. Thus,

$$
M^{-1} A M=M^{-1}\left(M B M^{-1}\right) M=\left(M^{-1} M\right) B\left(M^{-1} M\right)=B
$$

and so $B=M^{-1} A M$ with $M^{-1} \in T$ implies $B \sim A$. Thus, $\sim$ is symmetric on $S$.

If $A \sim B$ and $B \sim C$, then there exist invertible matrices $M$ and $N$ such that $A=M B M^{-1}$ and $B=N C N^{-1}$. Thus,

$$
A=M B M^{-1}=M\left(N C N^{-1}\right) M^{-1}=(M N) C(M N)^{-1}
$$

since the product of two invertible matrices is invertible and $(M N)^{-1}=$ $N^{-1} M^{-1}$. Thus, $A \sim C$ and $\sim$ is transitive.

Problem 4.62: Prove Theorem 4.8: If $n \in \mathbb{N}$, congruence modulo $n$ is an equivalence relation on the set of integers.

Proof. Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. Then $a-a=0$ and 0 is divisible by $n$. So $a \equiv a \bmod n$, and the relation is reflexive.

Now suppose $a \equiv b \bmod n$. Then $n \mid(a-b)$ so there exists an integer $k$ such that $a-b=k n$. Then $b-a=-k n$ where $-k$ is an integer, and so $n \mid b-a$ and $b \equiv a \bmod n$. Thus, the relation is symmetric.

If $a \equiv b \bmod n$ and $b \equiv c \bmod n$, then $n \mid(a-b)$ and $n \mid(b-c)$. Note that $a-c=(a-b)+(b-c)$ and so is the sum of two terms divisible by $n$. Thus $n \mid(a-c)$, and $a \equiv c \bmod n$ implies the relation is transitive.

Problem 4.64: For the equivalence relation $a \equiv b \bmod 9$ we have that for each natural number $n,\left[10^{n}\right]=[1]$.

Proof. Since the given relation is an equivalence relation, it suffices to show that for each natural number $n, 10^{n} \equiv 1 \bmod 9$.

Let $S=\left\{n \in \mathbb{N}: 9 \mid\left(10^{n}-1\right)\right\} . \quad 1 \in S$ because 9 divides $10^{1}-1$. Assume $n \in S$. Then 9 divides $10^{n}-1$, and so there exists an integer $k$ such that $10^{n}-1=9 k$.

$$
\begin{aligned}
10^{n+1}-1 & =10 \cdot 10^{n}-1 \\
& =9 \cdot 10^{n}+10^{n}-1 \\
& =9 \cdot 10^{n}+9 k \\
& =9\left(10^{n}+k\right),
\end{aligned}
$$

where the third inequality is due to the statement derived from the induction hypothesis. Hence $n+1 \in S$. Therefore, by the Principle of Mathematical Induction, $S=\mathbb{N}$.

