Final Exam, Mathematics 109
Dr. Cristian D. Popescu
December 9, 2004

Name:
Student ID:
Section Number:

Note: There are 5 problems on this exam, worth 40 points each. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted. Good luck!
I. (40 pts.) Let $X=[0, \infty)$ and let $R \subseteq X \times X$ be the relation on X (i.e. from X to X) defined as follows

$$
R=\left\{(x, y) \mid x, y \in[0, \infty), \quad x^{2}+x-y^{2}=0\right\}
$$

(1) Is R an equivalence relation on X ? Justify.
(2) Show that R is a functional relation on X.
(3) Write the explicit expression of $f(x), x \in X$, for the function

$$
f: X \longrightarrow X
$$

determined by the functional relation R above.
(4) Show that the function f is bijective.
(5) Determine the inverse $f^{-1}: X \longrightarrow X$ of the bijective function f.
II. (40 pts.)
(1) Solve (i.e. determine the full solution set of) the following system of linear congruences.

$$
\begin{aligned}
& x \equiv 1 \bmod 2 \\
& x \equiv 2 \bmod 3 \\
& x \equiv 4 \bmod 5
\end{aligned}
$$

(2) Show that if $x \in \mathbb{Z}$ is a solution to the system above, then

$$
x^{3} \equiv-1 \quad \bmod 30
$$

III. (40 pts.) Let $\left\{f_{n}\right\}_{n \geq 1}$ be the Fibonacci sequence given recursively by $f_{1}=$ $f_{2}=1$, and $f_{n+2}=f_{n+1}+f_{n}$, for all $n \in \mathbb{N}$.
(1) Prove that $f_{3 n}$ is even, $f_{3 n+1}$ is odd, and $f_{3 n+2}$ is odd, for all natural numbers n.
(2) Prove that for each natural number n, we have

$$
\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1
$$

(3) Prove that for all natural numbers n we have an equality

$$
f_{1}+f_{2}+\cdots+f_{n}=f_{n+2}-1
$$

IV. (40 pts.) The universe for the variable p below is the set of prime numbers \mathcal{P}, while the universe for the variables n and m is the set of natural numbers \mathbb{N}.
(1) Write the negation of the following statement

$$
(\forall p)(\forall n)(\exists m) \quad(\operatorname{gcd}(p, n)=1) \longrightarrow\left(n^{m} \equiv 1 \bmod p\right) .
$$

(2) Prove or disprove the statement in (1) above.
V. (40 pts.)
(1) Prove that if A and B are two subsets of a given universal set \mathcal{U}, then

$$
\overline{(\bar{A} \cup B)} \cap A=A \backslash B .
$$

Here, as usual, \bar{C} denotes the universal complement of the set C inside \mathcal{U}.
(2) For each natural number $n \in \mathbb{N}$, let

$$
A_{n}:=\left(-\frac{1}{n}, \frac{2 n-1}{n}\right)=\left\{x \mid x \in \mathbb{R}, \quad-\frac{1}{n}<x<\frac{2 n-1}{n}\right\} .
$$

Determine $\cup_{n \in \mathbb{N}} A_{n}$ and $\cap_{n \in \mathbb{N}} A_{n}$.

