Final Exam, Mathematics 109 Dr. Cristian D. Popescu December 9, 2004 Name: Student ID: Section Number:

Note: There are 5 problems on this exam, worth 40 points each. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted. Good luck !

I. (40 pts.) Let $X = [0, \infty)$ and let $R \subseteq X \times X$ be the relation on X (i.e. from X to X) defined as follows

$$R = \{(x, y) \mid x, y \in [0, \infty), \quad x^2 + x - y^2 = 0\}.$$

- (1) Is R an equivalence relation on X? Justify.
- (2) Show that R is a functional relation on X.
- (3) Write the explicit expression of $f(x), x \in X$, for the function

$$f: X \longrightarrow X$$

determined by the functional relation R above.

- (4) Show that the function f is bijective.
- (5) Determine the inverse $f^{-1}: X \longrightarrow X$ of the bijective function f.

II. (40 pts.)

(1) Solve (i.e. determine the full solution set of) the following system of linear congruences. $x = 1 \mod 2$

$$x \equiv 1 \mod 2$$
$$x \equiv 2 \mod 3$$
$$x \equiv 4 \mod 5$$

(2) Show that if $x \in \mathbb{Z}$ is a solution to the system above, then

 $x^3 \equiv -1 \mod 30.$

III. (40 pts.) Let $\{f_n\}_{n\geq 1}$ be the Fibonacci sequence given recursively by $f_1 = f_2 = 1$, and $f_{n+2} = f_{n+1} + f_n$, for all $n \in \mathbb{N}$.

- (1) Prove that f_{3n} is even, f_{3n+1} is odd, and f_{3n+2} is odd, for all natural numbers n.
- (2) Prove that for each natural number n, we have

$$\gcd(f_n, f_{n+1}) = 1.$$

(3) Prove that for all natural numbers n we have an equality

$$f_1 + f_2 + \dots + f_n = f_{n+2} - 1$$
.

IV. (40 pts.) The universe for the variable p below is the set of prime numbers \mathcal{P} , while the universe for the variables n and m is the set of natural numbers \mathbb{N} .

(1) Write the negation of the following statement

 $(\forall p)(\forall n)(\exists m) \pmod{p} = 1 \pmod{p}$.

(2) Prove or disprove the statement in (1) above.

V. (40 pts.)

(1) Prove that if A and B are two subsets of a given universal set \mathcal{U} , then

$$\overline{(\overline{A}\cup B)}\cap A = A\setminus B.$$

Here, as usual, \overline{C} denotes the universal complement of the set C inside \mathcal{U} . (2) For each natural number $n \in \mathbb{N}$, let

$$A_n := \left(-\frac{1}{n}, \frac{2n-1}{n} \right) = \left\{ x \, | \, x \in \mathbb{R}, \quad -\frac{1}{n} < x < \frac{2n-1}{n} \right\} \,.$$

Determine $\cup_{n \in \mathbb{N}} A_n$ and $\cap_{n \in \mathbb{N}} A_n$.