Exam 1, Mathematics 20C
Dr. Cristian D. Popescu
October 16, 2006

Name:
Student ID:
Section Number:

Note: There are 3 problems on this exam. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted.

I. (30 points)

(1) Sketch the curve with polar equation $r=\sin \theta$.
(2) Write the equation of the tangent line to the curve in (1) at the point corresponding to $\theta=\frac{\pi}{6}$.
(3) Find the points on the curve above where the tangent to the curve is horizontal.
(4) Find a cartesian equation for the curve in (1) and identify the curve.
II. (40 points) Let $\vec{a}=<1,0,1>$ and $\vec{b}=<1,1,0>$.
(1) Compute the angle $\theta \in[0, \pi)$ determined by the vectors \vec{a} and \vec{b}.
(2) Find a unit vector \vec{u} which makes an angle of $\pi / 3$ radians with both \vec{a} and \vec{b}.
(3) Find the area of the parallelogram determined by the vectors \vec{a} and \vec{b}.
(4) Write the equation of the plane passing through $P_{0}(0,0,0)$ and which is perpendicular on \vec{a}.
III. (40 points) Let $\left(\pi_{1}\right): x-z-2=0$ and $\left(\pi_{2}\right): x-y=0$ be the equations of two planes $\left(\pi_{1}\right)$ and $\left(\pi_{2}\right)$.
(1) Find the angle $\theta \in[0, \pi)$ determined by the two planes above.
(2) Find the symmetric equations of the line of intersection between the two planes above.
(3) Find the distance between the point $P_{0}(2,0,1)$ and the plane $\left(\pi_{1}\right)$.
(4) Find the point of intersection between the plane $\left(\pi_{1}\right)$ and the line which passes through $P_{0}(2,0,1)$ and is perpendicular on $\left(\pi_{1}\right)$.

