Exam 1, Mathematics 103B Prof. Cristian D. Popescu January 26, 2011

Name: Student ID:

Note: There are 3 problems on this exam. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted.

I. (35 points)

Let R be a ring with $0_R \neq 1_R$ and such that $x^2 = x$, for all $x \in R$.

- (1) Show that x + x = 0, for all $x \in R$.
- (2) Show that char(R) = 2.
- (3) Show that R is commutative.
- (4) Give an example of a ring R with more than two elements satisfying the above properties.

II. (30 points)

Let R be the subset of the field \mathbb{Q} of rational numbers consisting of all fractions $\frac{m}{n}$, with $m, n \in \mathbb{Z}$, such that $2 \nmid n$.

- (1) Show that R is a subring of \mathbb{Q} , with the usual addition and multiplication of rational numbers.
- (2) Show that $\frac{m}{n} \in R^{\times}$ if and only if $2 \nmid m$ and $2 \nmid n$. (3) Is R a field ? Justify your answer.
- (4) What is the characteristic of R? Justify your answer.

III. (35 points)

Let p and q be two prime numbers, such that p < q. Let $m = p^2 \cdot q$.

- (1) List all the nilpotent elements in the ring \mathbb{Z}_m . Justify your answer.
- (2) List all the zero-divisors in the ring \mathbb{Z}_m . Justify your answer.
- (3) Show that $\widehat{p-1}$ is a unit in \mathbb{Z}_m .
- (4) Is $\widehat{q-1}$ necessarily a unit in \mathbb{Z}_m ? Justify your answer.