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Abstract. Let F/K be an abelian extension of number fields with F ei-

ther CM or totally real and K totally real. If F is CM and the Brumer-
Stark conjecture holds for F/K, we construct a family of G(F/K)–equivariant
Hecke characters for F with infinite type equal to a special value of certain

G(F/K)–equivariant L–functions. Using results of Greither–Popescu [19] on
the Brumer–Stark conjecture we construct l–adic imprimitive versions of these
characters, for primes l > 2. Further, the special values of these l–adic Hecke
characters are used to construct G(F/K)–equivariant Stickelberger–splitting

maps in the Quillen localization sequence for F , extending the results obtained
in [1] for K = Q. We also apply the Stickelberger–splitting maps to construct
special elements in K2n(F )l and analyze the Galois module structure of the
group D(n)l of divisible elements in K2n(F )l. If n is odd, l - n, and F = K

is a fairly general totally real number field, we study the cyclicity of D(n)l in
relation to the classical conjecture of Iwasawa on class groups of cyclotomic
fields and its potential generalization to a wider class of number fields. Finally,
if F is CM, special values of our l–adic Hecke characters are used to construct

Euler systems in odd K-groups K2n+1(F,Z/lk). These are vast generaliza-
tions of Kolyvagin’s Euler system of Gauss sums [33] and of the K–theoretic
Euler systems constructed in [4] when K = Q.

1. Introduction

Notation.
Let L be a number field. For a nontrivial OL–ideal a, we let, as usual, Na :=

|OL/a| denote the norm of a and Supp(a) denote the set of distinct prime OL–ideals
which divide a. If M/L is a finite abelian extension and the OL–ideal a is prime
then Ga denotes the decomposition group associated to a, viewed as a subgroup of
G(M/L). Further, if a is (not necessarily prime) but coprime to the conductor of
M/L, then σa denotes the Frobenius element associated to a in G(M/L). We will
let S∞(L) denote the set of archimedean primes of L, IL the group of fractional
OL–ideals and IL(a) the group of fractional OL ideals which are coprime to a.

For a prime number l the symbol ωL,l denotes the l–adic cyclotomic character:

ωL,l : GL → Z×
l .

Recall that GL := G(L/L) acts on the Zl-modules Zl(n), Ql(n) and Ql/Zl(n) :=
Zl(n)⊗Zl

Ql/Zl = Ql(n)/Zl(n) via the n–th power of ωL,l.
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For n ≥ 1, let wn(L)l := |(Ql/Zl)(n)
GL | and

wn(L) :=
∏
l≥2

wn(L)l.

Note that w1(L)l = |µL ⊗Z Zl|, where µL is the group of roots of unity in L. For
simplicity, we let wL := w1(L) = |µL|.

If A is an abelian group and k ∈ Z≥0 we let A[lk] denote the lk–torsion subgroup
of A and Al := A⊗Z Zl.

For a unital ring R and an integer m ≥ 0, Km(R) and Km(R,Z/lk) denote the
corresponding QuillenK–group andK–group with coefficients in Z/lk, respectively.

1.1. Hecke characters. In this paper, we consider abelian extensions F/K of
number fields, where F is either CM or totally real and K is totally real. We
consider two OK–ideals f and b, such that f is divisible by the (finite) conductor
of F/K and b is coprime to f . To the data (F/K, f ,b) one associates the Galois
equivariant holomorphic L–function:

Θf ,b : C → C[G],

Θf ,b(s) := (1−Nb1+s · σ−1
b ) ·

∑
σ∈G(F/K)

ζf (σ, s) · σ−1.

The special values Θn(b, f) := Θf ,b(−n), for all n ∈ Z≥0, are what Coates [12] calls
higher Stickelberger elements. According to a deep theorem of Deligne–Ribet [14],

Θn(b, f) ∈ Z[G(F/K)], for all n ∈ Z≥0,

as long as b is coprime to wn+1(F ). In particular, if b is coprime to wF , then

Θ0(b, f) ∈ Z[G(F/K)].

Now, let us assume that F is CM. An equivalent formulation of the Brumer-Stark
conjecture (see [29]) is the following.

Conjecture 1.1 (BrSt(F/K, f), Brumer-Stark). Let F/K and f be as above. Then,
for any prime OK–ideal b which is coprime to wF · f , we have

Θ0(b, f) ∈ AnnZ[G(F/K)]CH
1(F )0Tb

,

where CH1(F )0Tb
is the Arakelov class–group associated to (F,b) defined in §3.1.

Under the assumption that the Brumer–Stark conjecture holds for (F/K, f), in §3.1
(see Proposition 3.12) we construct G(F/K)–equivariant Hecke characters

λb,f : IF (b) → F×,

of conductor b and infinite type Θ0(b, f), for all OK–ideals b coprime to wF · f .
For a ∈ IF (b), the value λb,f (a) is the unique element in F× with Arakelov divisor

divF (λb,f (a)) = Θ0(b, f) · a
and with some additional arithmetic properties (see §3.1 for details).

Weil’s Jacobi sum Hecke characters [42] can be recovered from our construction
for K = Q. The values of our characters λb,f are generalizations of the classical
Gauss sums, which arise in Weil’s construction. If viewed in towers of abelian CM
extensions of a fixed F/K, these values satisfy norm compatibility relations (see
Lemma 3.11) which lead to Euler systems for the algebraic group Gm, generalizing
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the Euler system of Gauss sums of Kolyvagin and Rubin [33] (see Lemma 3.11 and
Remark 7.3). It is also worth remarking that our construction of Hecke characters
is somewhat more refined (in that it keeps track of conductors and Galois theoretic
and arithmetic properties of special values) than that carried out by Yang in [43],
following ideas of Hayes [21].

The Brumer–Stark conjecture is not fully proven yet. However, the results of
Greither–Popescu [19] show that if the classical Iwasawa invariant µF,l vanishes
(as conjectured by Iwasawa), then an l–adic, imprimitive version of BrSt(F/K, f)
holds, for all primes l > 2 (see Theorem 3.16 below for the precise result). As a
consequence, under the vanishing hypothesis above, in §3.2 (see Lemma 3.20) we
construct, for all primes l > 2, the l–adic Zl[G(F/K)]–equivariant versions

λb,f : IF (b)⊗ Zl → F× ⊗ Zl

of the Hecke characters above, provided that f is divisible by all l–adic primes in
K (an imprimitivity condition.) These l–adic, imprimitive Hecke characters are
sufficient for our applications to K–theory in this paper.

1.2. Euler Systems in odd K–theory with coefficients. In the case where F
is CM, in §7 we push our generalization of Gauss sums farther and use the values
of our (l–adic, imprimitive) Hecke characters along with Bott elements to construct
Euler systems for the odd K–theory K2n+1(F,Z/lk) with coefficients in Z/lk, for
all n ≥ 0 and all primes l > 2. For n = 0 and K = Q one recovers the Euler System
of Gauss sums (modulo lk) of Kolyvagin and Rubin [33]. For n ≥ 1 and K = Q
one recovers the K–theory Euler systems constructed in [4]. (See Theorem 7.2 and
Remark 7.3 for details.)

1.3. Stickelberger-splitting maps in K–theory. Assume that F is either CM
or totally real, fix a prime l > 2, an integer n ≥ 1 and OK–ideals b and f as above.
We consider the l–torsion part of the Quillen localization sequence ([30] and [36])

(1) 0 // K2n(OF )l // K2n(F )l
∂F //⊕

v K2n−1(kv)l // 0.

Above, v runs over all the maximal ideals of OF and kv is the residue field of
v. In §4 (see Theorem 4.6), we use special values of the l–adic imprimitive Hecke
characters for extensions F (µlk)/K, with k ≥ 1, to construct a morphism

Λ :
⊕
v

K2n−1(kv)l −→ K2n(F )l

of Zl[G(F/K)]–modules, such that for all x ∈
⊕

v K2n−1(kv)l

(∂F ◦ Λ)(x) = xlvl(n)·Θ0(b,f).

Following [1], we call Λ a Stickelberger–splitting map for exact sequence (1). As
shown in [1] and [6] the construction of such maps has far reaching arithmetic
applications. The main idea behind constructing Λ is as follows: For each maximal
OK–ideal v0 we pick an OF –prime v dividing v0 and let lk := |K2n−1(kv)l|. Then
we pick a prime w in E := F (µlk) which divides v and consider the special element
λ∗
b,f (w) ∈ E× ⊗ Zl, where

λ∗
b,f : IE ⊗ Zl → E× ⊗ Zl

is a carefully chosen Zl[G(E/K)]–linear extension to the group IE of all fractional
ideals in E of the l–adic Hecke character λb,f associated to the data (E/K,b, f).
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Next, we map λ∗
b,f (w) into E×/E×lk ≃ K1(E,Z/lk). Then we construct the special

element:
TrE/F (λ

∗
b,f (w) ∗ b(β(ξlk)∗n))γl ∈ K2n(F )[lk],

where ξlk is a generator of µlk in E, β(ξlk) ∈ K2(E,Z/lk) is the corresponding Bott
element, γl ∈ Zl[G(F/K)] is an exponent defined in (17) and

b : K2n+1(E,Z/lk) → K2n(E)[lk]

is the Bockstein homomorphism. Consequently, for any generator ξv of K2n−1(kv)l
there is a unique group morphism

Λv : K2n−1(kv)l → K2n(F )l,

Λv(ξv) = TrE/F (λ
∗
b,f (w) ∗ b(β(ξlk)∗n))γl .

For a carefully chosen generator ξv (see Definition 4.1) the map Λv satisfies

∂F ◦ Λv(ξv) = ξl
vl(n)·Θ0(b,f)
v

and is Zl[Gv]–equivariant (see Theorem 4.5). The map Λ is the unique Zl[G(F/K)]–
linear morphism which equals Λv when restricted to K2n−1(kv)l, for all the chosen
OF –primes v (see Theorem 4.6).

The above construction generalizes to arbitrary totally real fields K the con-
struction of [1] done in the case K = Q. The above construction is very different
from that in [6] and it has the advantage of being Zl[G(F/K)]–linear unlike the one
in loc.cit., a property which leads to new arithmetic applications, as shown below.

1.4. Divisible elements in K–theory and Iwasawa’s conjecture. For a num-
ber field L and an n > 0 the group of divisible elements in K2n(L)l is given by

div(K2n(L)l) :=
∩
k>0

K2n(L)
lk

l .

It is well known that the groups div(K2n(L)l) are contained in K2n(OL)l and they
are the correct higher K–theoretic analogues of the ideal–class group Cl(OL)l =
(K0(OL)tor)l (see [2] and [19], for example). The group div(K2n(L)l) is also one
of the main obstructions (see [3, Section 4 and Theorem 6.4]) to the splitting of
exact sequence (1) (in the category of Zl–modules). In particular div(K2n(Q)l) is
the only obstruction [3, Corollary 6.6] to the splitting of (1) for L = Q. Combined
with the newly proved Quillen–Lichtenbaum Conjecture [39] and with [3, Theorem
5.10], Theorem 4, p. 299 in [2] can be restated as

[K2n(OL)l : div(K2n(L)l)] =

∏
v|l wn(Lv)l

wn(L)l
,

for all number fields L and all n ≥ 1, where v runs over all the l–adic primes of L
and Lv is the v–adic completion of L. Thus, for L = Q and all n ≥ 1 we have

K2n(Z)l = div(K2n(Q)l).

Let ω : G(Q(µl)/Q) → Z×
l denote the Teichmuller character. Using divisible

elements (see [4] and [5]), one of Kurihara’s results in [24] can be restated as follows:

(2) div(K2n(Q)l) is cyclic ⇐⇒ Cl(Q(µl))
ω−n

l is cyclic,

for all odd n ≥ 1 and

(3) div(K2n(Q)l) = 0 ⇐⇒ Cl(Q(µl))
ω−n

l = 0,
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for all even n ≥ 1. The right–hand side of (2) is a deep conjecture of Iwasawa and
right–hand side of (3) is an equaly deep conjecture of Kummer-Vandiver.

From the above remarks it is clear that the study of the groups div(K2n(L)l) is
of central importance for understanding the arithmetic of L.

In §5, we use our Stickelberger splitting map to study the Zl[G(F/K)]–module
structure and group structure of the abelian group div(K2n(F )l). We work in this
section under the simplifying hypotheses that F (µl)/K is ramified at all the l–adic
primes, F (µl∞)/F (µl) is totally ramified at all these primes and l - n · |G(F/K)|.
In this context, we show (see Theorem 5.3) that

div(K2n(F )l)
χ = K2n(OF )

χ
l ∩ Im(Λ),

for all irreducible Cl–valued characters χ of G, such that χ(Θn(b, f)) ̸= 0. In the
particular case F = K and n ≥ 1 odd, this implies that

(4) div(K2n(K)l) = K2n(OK)l ∩ Im(Λ).

These results show that the divisible elements are in fact special values of our maps
Λ and can be explicitely constructed, as explained above, out of special values of
our l–adic Hecke characters and Bott elements. Further considerations based on
(4) lead us to the proof of the following equivalence (see Theorem 5.4):

(5) div(K2n(F )l) is cyclic ⇐⇒ Λv0 is injective,

for a well chosen ideal b and OF –prime v0, assuming that
∏

v|l wn(F )l = 1.

In particular, in §6 we combine (5) for F = Q with our explicit construction of Λ
to obtain a new proof of Kurihara’s result (2) (see Theorem 6.4.) It is hoped that
the techniques developed in §6 can be extended to other totally real fields and to a
generalization of Iwasawa’s conjecture in that context.

Acknowledgments. The first author would like to thank the University of Cal-
ifornia, San Diego for its hospitality and financial support during the period De-
cember 2010–June 2011. The second author would like to thank the Banach Center
(Bȩdlewo, Poland) for hosting him in July 2012.

2. The higher Stickelberger elements

Let F/K be a finite, abelian CM or totally real extension of a totally real number
field K. Let f be the (finite) conductor of F/K and let f ′ be any nontrivial OK–ideal
divisible by all the primes dividing f , i.e. Supp(f) ⊆ Supp(f ′).

For all f ′ as above and all σ ∈ G(F/K), let ζf ′(σ, s) is the f
′–imprimitive partial

zeta function associated to σ ∈ G(F/K) of complex variable s. For ℜ(s) > 1, this
is defined by the absolutely and compact-uniformly convergent series

ζf ′(σ, s);=
∑
a

Na−s,

where the sum is taken over all the ideals a of OK which are coprime to f ′ and such
that σa = σ. It is well known that ζf ′(σ, s) has a unique meromorphic continuation
to the entire complex plane C and that it is holomorphic away from s = 1.

Definition 2.1 (Coates, [12]). For all n ∈ Z≥0, all f
′ as above, and all OK–ideals

b coprime to f ′, the Stickelberger elements Θn(b, f
′) ∈ C[G(F/K)] are given by

Θn(b, f
′) := (1−Nb1+n · σ−1

b ) ·
∑

σ∈G(F/K)

ζf ′(σ,−n) · σ−1.
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Remark 2.2. Note that ζf ′(σ, s) and consequently the elements Θn(b, f
′) only

depend on Supp(f ′) and not on f ′ per se.

A deep theorem of Siegel (see [35]) implies that Θn(b, f
′) ∈ Q[G(F/K)], for all

f ′, b and n as above. In [14], Deligne and Ribet proved the following refinement of
Siegel’s theorem.

Theorem 2.3 (Deligne-Ribet, [14]). Let f ′, b and n be as above and let l be a
prime number. Then, we have

Θn(b, f
′) ∈ Zl[G(F/K)],

as long as b is coprime to wn+1(F )l.

Consequently, if b and f ′ are as above and b is coprime to wF , then we have

Θ0(b, f
′) ∈ Z[G(F/K)].

A fundamental congruence relation between Θ0(b, f
′) and Θn(b, f

′), for arbitrary
n ≥ 1, is proved in [14]. In order to state it, let us first note that for every n ≥ 1 the
character ωn

K,l modulo wn(F )l factors through G(F/K). Consequently, we obtain
a group morphism

ω
(n)
K,l : G(F/K) → (Zl/wn(F )l)

×.

This extends to a unique Zl/wn(F )l–algebra isomorphism

tn : (Zl/wn(F )l)[G(F/K)] ≃ (Zl/wn(F )l)[G(F/K)],

which sends σ → ω
(n)
K,l(σ)

−1 · σ, for all σ ∈ G(F/K).

Theorem 2.4 (the Deligne–Ribet congruences, [14]). For all f ′, b, l and n ≥ 1 as
above, if b is coprime to wn+1(F )l, then we have

̂Θn(b, f ′) = tn( ̂Θ0(b, f ′)),

where x̂ is the class of x modulo wn(F )l, for all x ∈ Zl[G(F/K)].

Remark 2.5. It is easily seen that for all b and f ′ as above we have an equality

Θn(b, f
′) := (1−Nb1+n · σ−1

b ) ·
∑

χ∈ ̂G(F/K)

Lf ′(χ,−n) · eχ,

where Lf ′(χ, s) is the f ′–imprimitive L–function associated to the complex, irre-
ducible character χ of G(F/K) and eχ is the usual idempotent associated to χ in
the group algebra C[G(F/K)].

As usual, if F is a CM field we will call a character χ of G(F/K) even if χ(j) = 1
and odd if χ(j) = −1, where j is the unique complex conjugation automorphism
of F (contained in G(F/K).) If F is totally real, then all characters χ of G(F/K)
are called even. A well known consequence of the functional equation for Lf ′(χ, s)
is that its order of vanishing at s = 0 is given by the following formula

ords=0Lf ′(χ, s) =

{
card {w ∈ Supp(f ′) ∪ S∞(F ) | χ(Gw) = 1}, if χ ̸= 1;
card Supp(f ′) + cardS∞(F )− 1, if χ = 1,

where 1 is the trivial character of G(F/K). The formula above shows that if χ is
an even character, then Lf ′(χ, 0) = 0. This implies that for all b and f ′ as above,
if F is a CM field we have

(6) Θ0(b, f
′) ∈ (1− j) · Z[G(F/K)].
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For a more detailed discussion of the higher Stickelberger elements and their
basic properties, the reader can consult for example [6], Section 2.

3. The Brumer–Stark elements and associated Hecke characters

In the 1970s, Brumer formulated a conjecture which generalizes to a great extent
Stickelberger’s classical theorem. This conjecture was rediscovered in a much more
precise form by Stark in [37], as a particular case of what we now call the refined,
order of vanishing 1, abelian Stark conjecture. For a very lucid presentation of
the Brumer-Stark conjecture, the reader is strongly advised to consult Chpt. IV,
§6 of [38]. For a more modern presentation, we refer the reader to §4.3 of [29],
where the second author reformulates the Brumer-Stark conjecture in terms of the
annihilation of certain generalized Arakelov class–groups.

3.1. The global theory. In what follows, we remind the reader the formulation of
the Brumer–Stark conjecture stated in [29] in the (slightly more restrictive) context
relevant for our current purposes and use it to derive some useful consequences on
the existence of certain so–called Brumer–Stark elements and Hecke characters.

Let F/K and f ′ be as in the previous section. Throughout this section F is
assumed to be a CM number field. Let S∞ the set of infinite (archimedean) primes
in F . Let Sf ′ be the union of S∞ with the set consisting of all the primes in F
dividing f ′. We consider the usual Arakelov divisor group associated to F :

DivS∞(F ) :=

 ⊕
w ̸∈S∞

Z · w

⊕( ⊕
w∈S∞

R · w

)
,

where the sum is taken over primes w in F . Further, we define a degree map

degF : DivS∞(F ) → R

to be the unique map which is Z–linear on the first direct summand above and
R–linear on the second and which also satisfies the equalities

degF (w) =

{
1, if w ∈ S∞;
log |Nw|, if w ̸∈ S∞.

Above, as usual, we let Nw := card(OF /w). We let Div0S∞
(F ) denote the kernel

of the group morphism degF . The product formula (for the canonically normalized
metrics of F ) permits us to define a divisor map (which is a group morphism) by

divF : F× → Div0S∞
(F ), x →

∑
w ̸∈S∞

ordw(x) · w +
∑

w∈S∞

(− log |x|w) · w ,

where ordw(·) and | · |w denote the canonically normalized valuation and metric as-
sociated to w, respectively. The Arakelov class group (first Chow group) associated
to F is defined as follows.

CH1(F )0 :=
Div0S∞

(F )

divF (F×)
.

Next, following [29], we define a generalized version of the above constructions.
For that purpose, let b be a prime ideal in K, coprime to f ·wF . Let Tb be the set
of primes in F which sit above b. Further, we let F×

b denote the subgroup of F×
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consisting of those elements which are congruent to 1 modulo b. We consider the
following subgroup of DivS∞(F ):

DivS∞,Tb
(F ) :=

 ⊕
w ̸∈S∞∪Tb

Z · w

⊕( ⊕
w∈S∞

R · w

)

and let Div0S∞,Tb
(F ) := DivS∞,Tb

(F )∩Div0S∞
(F ). Obviously, we have divF (F

×
b ) ⊆

Div0S∞,Tb
(F ). We define the following generalized Arakelov class group

CH1(F )0Tb
:=

Div0S∞,Tb
(F )

divF (F
×
b )

.

For a detailed description of the structure of these (classical or generalized) Arakelov
class groups, their links to ideal class groups and special values of zeta functions,
the reader may consults [29], Section 4.3. However, the reader should be aware
at this point that these Arakelov class groups are by no means finite: if endowed
with the obvious topology, their connected component at the origin is compact of
volume equal to a certain non-zero (generalized) Dirichlet regulator and their group
of connected components is isomorphic to a certain (ray) class group.

Remark 3.1. Obviously, we have ker(divF ) = µF , so the map divF factors through
F×/µF . In what follows, we abuse notation and use divF to denote the factor map
as well. However, for a prime ideal b coprime to wF , we have F

×
b ∩µF = {1}. This

makes the divisor morphism divF injective when restricted to F×
b .

Finally, let us observe that the groups F×, F×
b , Div0S∞

(F ) and Div0S∞,Tb
(F )

are endowed with natural Z[G(F/K)]–module structures and that the map divF
is G(F/K)–equivariant. Consequently, CH1(F )0 and CH1(F )0Tb

are endowed with
natural Z[G(F/K)]–module structures.

As we prove in [29] (see Proposition 4.3.5(1)), the classical Brumer-Stark con-
jecture for the set of data (F/K, Sf ′) is equivalent to the following statement.

Conjecture 3.2 (BrSt(F/K,Sf ′), Brumer-Stark). For all prime ideals b in K
which are coprime to f ′ · wF , we have

Θ0(b, f
′) ∈ AnnZ[G(F/K)]CH

1(F )0Tb
.

Remark 3.3. In fact, it is sufficient to prove the conjecture above for all but
finitely many prime ideals b. Moreover, it is sufficient to prove the statement above
for any (finite) set T of prime ideals b which are coprime to f ′ · wF and such that
the set {1 − Nb · σ−1

b | b ∈ T } generates the Z[G(F/K)]–ideal AnnZ[G(F/K)](µF ).
Also, it is important to note that if one proves the statement above for a given f ′,
then it also follows for any f ′′, such that Supp(f ′) ⊆ Supp(f ′′). Indeed, this is an
immediate consequence of the obvious equality

Θ0(b, f
′′) =

∏
w

(1− σ−1
w ) · Θ0(b, f

′),

where the product runs over all the primes w in K dividing f ′′ but not dividing f ′.
All these facts are proved in [29], Section 4.3.

Remark 3.4. Let us note that if BrSt(F/K, Sf ′) holds for a prime b, then

Θ0(b, f
′) ∈ AnnZ[G(F/K)]Cl(OF )b ⊆ AnnZ[G(F/K)]Cl(OF ),
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where Cl(OF )b is the ray–class group of conductor bOF associated to F . Indeed,
this is a direct consequence of the existence of (commuting) natural Z[G(F/K)]–
linear surjections

CH1(F )0Tb

// //

����

Cl(OF )b

����
CH1(F )0 // // Cl(OF ),

explicitly constructed in [29], Section 4.3.
However, for our current purposes we need a more explicit proof and analysis of

this consequence of the Brumer–Stark conjecture. So, let us take an ideal class ĉ in
Cl(OF )b associated to a fractional OF –ideal c which is coprime to b. In the obvious
manner, we can associate to c a divisor c̃ in DivS∞,Tb

(F ). Now, let us pick an

infinite (archimedean) prime∞ of F and note that (c̃−degF (c̃)·∞) ∈ Div0S∞,Tb
(F ).

Consequently, by our assumption, there is a unique λb,f ′(c) ∈ F×
b , such that

Θ0(b, f
′) · (c̃− degF (c̃) · ∞) = divF (λb,f ′(c)).

The uniqueness of λb,f ′(c) follows from the injectivity of divF when restricted to
F×
b . (See the Remark 3.1.) Note that due to (6) and to the obvious fact that

(1− j) · ∞ = 0 in Div0S∞,Tb
(F ), the last equality can be rewritten as

(7) Θ0(b, f
′) · c̃ = divF (λb,f ′(c)).

This shows that the element λb,f ′(c) does not depend on the choice of the infinite

prime ∞. Moreover, it shows that cΘ0(b,f
′) is a principal OF –ideal generated by

λb,f ′(c), which proves the annihilation consequence claimed above.

Remark 3.5. If BrSt(F/K, Sf ′) holds, then

Θ0(b, f
′) ∈ AnnZ[G(F/K)]CH

1(F )0 ⊆ AnnZ[G(F/K)]Cl(OF ),

for all proper OK–ideals b coprime to f ′ · wF . Indeed, for a fixed ideal b, this is a
direct consequence of the previous remark applied to Θ0(p, f

′), for all primes p | b
and the obvious equality

(8) Θ0(ad, f
′) = Nd · σ−1

d ·Θ0(a, f
′) + Θ0(d, f

′),

which holds for all proper OK–ideals a and d coprime to f ′ · wF . Moreover, by
combining equalities (8) and (7) above, one can easily show that if b is a proper
OK–ideal, coprime to f ′ · wF and c is any fractional OF –ideal, then there exists a

unique element λ̂b,f ′(c) ∈ F×/µF , such that

(9) divF (λ̂b,f ′(c)) = Θ0(b, f
′) · c̃.

Indeed, if c is coprime to b, this is obvious. For an arbitrary c, we pick a fractional
OF –ideal d coprime to b and an ε̂ ∈ F×/µF , such that we have an equality

c̃ = d̃+ divF (ε̂) +D∞,

in DivS∞(F ), where D∞ ∈
⊕

w∈S∞
R ·w. We hit the above equality with Θ0(b, f

′)
to obtain

Θ0(b, f
′) · c̃ = divF (λ̂b,f ′(d) · ε̂Θ0(b,f

′)).

Therefore, we can set λ̂b,f ′(c) := λ̂b,f ′(d) · ε̂Θ0(b,f
′).
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The reader should notice that if b is not prime, then, in general, it is not true
that Θ0(b, f

′) annihilates the ray–class group Cl(OF )b of conductor bOF (i.e. the

elements λ̂b,f ′(c) cannot be chosen to be classes in F×/µF of elements in F× which
are congruent to 1 mod bOF even if c is coprime to b, in general.)

Definition 3.6. Let F/K and f ′ be as above. Assume that BrSt(F/K, Sf ′) holds.
Consider a pair (b, c) consisting of a proper OK–ideal b which is coprime to f ′ ·wF

and a fractional OF –ideal c. Then, the unique element λ̂b,f ′(c) ∈ F×/µF satisfying
(9) is called the Brumer–Stark element associated to (F/K, f ′,b, c).

Lemma 3.7. Under the assumptions and with the notations of the above definition,
the following hold.

(i) For all pairs (b, c) as above, we have an equality in F×

λ(1+j) = 1,

for any λ in F× whose class in F×/µF is λ̂b,f ′(c).
(ii) For all pairs (a, c) and (b, c) as above, we have an equality in F×/µF

λ̂ab,f ′(c) = λ̂a,f ′(c)
Nb·σ−1

b · λ̂b,f ′(c).

Proof. In order to prove (i), one combines (9) and (6), to conclude that

divF (λ
(1+j)) = (1 + j) ·Θ0(b, f

′) · c̃ = 0.

Consequently, λ(1+j) ∈ µF ∩F+ = {±1}, where F+ = F j=1 is the maximal totally
real subfield of F . However, since F is CM, x(1+j) is a totally positive element of
F+, for all x ∈ F×. This implies that λ(1+j) = 1, as stated.

The equality in (ii) is a direct consequence of (8) and (9). �

The considerations in the last two remarks lead naturally to the following.

Proposition 3.8. Fix F/K and f ′ as above. Assume that conjecture BrSt(F/K,Sf ′)
holds true. Fix a fractional OF –ideal c and let Bc,f ′(F/K) be the set of all proper
OK–ideals b which are coprime to cf ′ · wF . Then, there exist unique elements
λb,f ′(c) in F×, for all b ∈ Bc,f ′(F/K), such that the following are satisfied.

(i) If b ∈ Bc,f ′(F/K), then divF (λb,f ′(c)) = Θ0(b, f
′) · c̃.

(ii) If b is a prime ideal in Bc,f ′(F/K), then λb,f ′(c) ∈ F×
b .

(iii) If a,b ∈ Bc,f ′(F/K), then we have

λab,f ′(c) = λa,f ′(c)
Nb·σ−1

b · λb,f ′(c).

Moreover, for all σ ∈ G(F/K) and all b ∈ Bc,f ′(F/K)(= Bσ(c),f ′(F/K)), we have

λb,f ′(σ(c)) = σ(λb,f ′(c)).

Proof. Let us first note that if b is prime, then conditions (i) and (ii) determine
λb,f ′(c) ∈ F×

b uniquely. Indeed, Remark 3.4 shows that λb,f ′(c) is the unique

element in F×
b , such that

Θ0(b, f
′) · c̃ = divF (λb,f ′(c)).

We define elements λb,f ′(c) satisfying (i) and (ii) for all b ∈ Bc,f ′(F/K) by induction
on the number of (not necessarily distinct) prime factors of b as follows. For
ideals b with one prime factor this has just been achieved. Now, assume that
we have achieved this for ideals with (n − 1) prime factors, for some n ≥ 2. Let
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b′ ∈ Bc,f ′(F/K) equal to a product of n primes. Let p be a prime dividing b′ and
let b′ = bp. Obviously, we have p,b ∈ Bc,f ′(F/K). We let

(10) λb′,f ′(c) := λb,f ′(c)
Np·σ−1

p · λp,f ′(c),

which clearly satisfies (i), by Lemma 3.7(ii). In order to check that this definition
does not depend on our choice of the prime p, we need to show that

(11) λb,f ′(c)
Np·σ−1

p · λp,f ′(c) = λb,f ′(c) · λp,f ′(c)
Nb·σ−1

b .

However, equation (8) shows that both sides of the equality to be proved have the
same (Arakelov) divisor, namely Θ0(bp, f

′) · c̃. This means that the two sides differ
by a root of unity, say ζ ∈ µF . This implies that

ζ = λb,f ′(c)
Np·σ−1

p −1 · λp,f ′(c)
1−Nb·σ−1

b .

Now, since λb,f ′(c) is coprime to p and λp,f ′(c) ∈ F×
p , the last equality implies

that ζ ∈ F×
p . However, since p is coprime to wF , this implies that ζ = 1, which

concludes the proof of (11).
Now, based on the inductive construction (10) given above, it is easily proved

that (iii) is satisfied. Also, the uniqueness of {λb,f ′(c) | b ∈ Bc,f ′(F/K)} follows
immediately from (iii) and the uniqueness of λb,f ′(c) for b prime in Bc,f ′(F/K)}.

The last statement in the Proposition follows by checking first that the set
{σ(λb′,f ′(c)) | b ∈ Bc,f ′(F/K)} satisfies properties (i)–(iii) with c replaced with
σ(c). This follows from the obvious fact that the map divF is G(F/K)–equivariant.
Finally, one uses uniqueness in order to prove the last equality in the Proposi-
tion. �

Definition 3.9. Let F/K and f ′ be as above. Assume that BrSt(F/K, Sf ′) holds.
Then, for any fractional OF –ideal c and any proper OK–ideal b corime to cf ′ ·wF ,
the unique element λb,f ′(c) in F× produced by Proposition 3.8 is called the strong
Brumer–Stark element associated to the data (F/K, f ′,b, c).

Remark 3.10. The astute reader would have noticed, no doubt, that throughout

the current section the elements λ̂b,f ′(c) and λb,f ′(c) depend only on Supp(f ′) and
not on f ′ per se. This is a direct consequence of Remark 2.2.

Lemma 3.11. Under the hypotheses of Proposition 3.8, assume in addition that
E/K is an abelian CM extension of K, such that F ⊆ E, and e′ is a OK–ideal
divisible by the primes dividing the conductor of E/K and those dividing f ′. Also,
assume that conjectures BrSt(E/K,Se′) and BrSt(F/K,Sf ′) hold. Let c be a frac-
tional OE–ideal. Then, for any proper OK–ideal b coprime to ce′ · wE, we have

NE/F (λb,e′(c)) = λb,f ′(NE/F (c))

∏
p|e′
p-f′

(1−σ−1
p )

,

where NE/F denotes the usual norm from E down to F at the level of elements and
fractional ideals in E, and the product is taken over prime OK–ideals p.

Proof. The proof is straightforward. The main idea is to prove that the elements

{NE/F (λb,e′(c)) | b} and {λb,f ′(NE/F (c))
Πp(1−σ−1

p ) | b} satisfy properties (i)–
(iii) in the statement of Proposition 3.8 with c and f ′ replaced by NE/F (c) and
e′, respectively, and then use the uniqueness property. Checking (ii) and (iii) is
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immediate. In order to check (i), first one uses the inflation property of Artin
L–functions to prove that

ResE/K(ΘE
0 (e

′,b)) = Θ0(e
′,b) = Θ0(f

′,b) ·
∏
p|e′
p-f′

(1− σ−1
p ),

for all b as above, where ΘE
0 (e

′,b) is the Stickelberger element in Z[G(E/K)]
associated to the data (E/K, e′,b) and ResE/K : Z[G(E/K)] → Z[G(F/K)] is the
Galois restriction group ring morphism. Secondly, one uses the easily verified

TrE/F ◦ divE = divF ◦NE/F ,

where TrE/F : DivS∞(E) → DivS∞(F ) is the usual trace at the level of Arakelov
divisors. We leave the details to the interested reader. �
Proposition 3.12 (Hecke characters). Let F/K and f ′ be as above. Assume that
BrSt(F/K, f ′) holds and fix a proper OK–ideal b, coprime to f ′ · wF . Let IF (b)
denote the group of fractional OF –ideals coprime to b. Then, the following hold:

(i) For all c, c′ ∈ IF (b), we have

λb,f ′(c · c′) = λb,f ′(c) · λb,f ′(c
′).

(ii) If ε ∈ F×, such that ε ≡ 1 mod ×bOF , we have

λb,f ′(εOF ) = εΘ0(b,f
′).

(iii) The group morphism

λb,f ′ : IF (b) → F×, c → λb,f ′(c)

is a Hecke character for F of conductor bOF and of infinite type Θ0(b, f
′).

(iv) The Hecke character λb,f ′ is G(F/K)–equivariant.

Proof. In order to prove (i), fix c and c′ as above. Then observe that both sets

{λa,f ′(cc
′) | a ∈ Bcc′,f ′(F/K)}, {λa,f ′(c) · λa,f ′(c

′) | a ∈ Bcc′,f ′(F/K)}
satisfy properties (i–iii) in Proposition 3.8 for the fractional OF –ideal c · c′. Then,
apply the uniqueness property of these elements.

In order to prove (ii), observe that since εΘ0(p,f
′) ≡ 1 mod ×pOF for any prime

ideal p | b and divF (ε
Θ0(p,f

′)) = Θ0(p, f
′)·ε̃OF (since divF is G(F/K)–equivariant),

we have an equality in F×

λp,f ′(εOF ) = εΘ0(p,f
′),

for any such prime p. Now, (ii) follows from the above equality and Proposition
3.8(iii), by induction on the number of prime factors of b.

The statement in (iii) is a direct consequence of (i) and (ii) and the definition of
a Hecke character of a given conductor b and given infinite type Θ ∈ Z[G(F/K)].

Finally, (iv) follows from the last statement of Proposition 3.8. �
Remark 3.13. The Hecke characters λb,f ′ constructed above are vast general-
izations of Weil’s Jacobi sum Hecke characters ([42]). Weil’s construction can be
obtained from the above when setting K = Q. Note that in that case the Brumer–
Stark conjecture is known to hold due to Stickelberger’s classical theorem (see [29],
Section 4.3 for more details.) The effort to “align general Brumer–Stark elements”
into Hecke characters was initiated by David Hayes in [21] and achieved with differ-
ent methods and at a lower level of generality by Yang in [43]. However, the reader
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should be aware of the fact that the proof of the 2–primary part of Theorem 5 in
[43] is incorrect.

Lemma 3.14. Under the assumptions of Proposition 3.12, there exists a (not nec-
essarily unique) Z[G(F/K)]–module morphism

λ∗
b,f ′ : IF → F×

which extends λb,f ′ and satisfies the properties

(12) divF (λ
∗
b,f ′(c)) = Θ0(b, f

′) · c̃, λ∗
b,f ′(c)

(1+j) = 1,

for all c ∈ IF .

Proof. For ideals c ∈ IF (b), we set λ∗
b,f ′(c) := λb,f ′(c). Now, we need to define

λ∗
b,f ′(w) for OF –primes w which divide b. Since we obviously have

(1−Nb · σ−1
b ) ∈ AnnZ[G](µF ),

Lemme 1.1 in [38, p. 82] implies that we can write (not uniquely)

(1−Nb · σ−1
b ) =

n∑
i=1

xi · (1−Npi · σ−1
pi

),

for some n ∈ N, some x1, . . . , xn ∈ Z[G], and some OK–primes p1, . . . ,pn which
are coprime to bf ′ · wF . Let us fix n, x1, . . . , xn and p1, . . . ,pn with the above
properties. Note that we have

Θ0(b, f
′) =

n∑
i=1

xi ·Θ0(pi, f
′).

Now, for each OF –prime w with w | b (therefore w ∈ IF (pi), for all i), we define

λ∗
b,f ′(w) :=

n∏
i=1

λpi,f ′(w)
xi .

This extends λ∗
b,f ′ to all OF –primes dividing b. Finally, for any c ∈ IF we set

λ∗
b,f ′(c) :=

∏
p|c

λ∗
b,f ′(p)

np , if c =
∏
p

pnp .

Above, the product is taken over all the OF –primes p. The reader can easily check
that the map λ∗

b,f ′ satisfies all the desired properties. �

Remark 3.15. If c = ϵOF is a principal ideal generated by ϵ ∈ F×, then

λ∗
b,f ′(ϵOF ) = ξ · ϵΘ0(b,f

′),

for some root of unity ξ ∈ µF , as the divisor equality (12) easily implies.
Also, with notations as in Lemma 3.11, once we pick extensions λ∗

b,e′ and λ∗
b,f ′ ,

the norm relations between λ∗
b,e′(c) and λ∗

b,f ′(NE/F (c)) become

NE/F (λ
∗
b,e′(c)) = ξc · λ∗

b,f ′(NE/F (c))

∏
p|e′
p-f′

(1−σ−1
p )

,

where ξc is a root of unity in µF , which depends on c. This follows easily from the
divisor equality (12). Of course, if b and c are coprime, then ξc = 1.
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3.2. The imprimitive l–adic theory. Very recently, Greither and the second
author (see [19], section 6.1) proved a strong form of the imprimitive Brumer-Stark
conjecture, away from its 2–primary part and under the hypothesis that certain
Iwasawa µ–invariants vanish (as conjectured by Iwasawa.) In what follows, we will
state a weak form of the main result in loc.cit. This result turns out to imply
the existence of an imprimitive l–adic version of (strong) Brumer–Stark elements
and Hecke characters, for all odd primes l, which is sufficient for the K–theoretic
constructions which follow.

Theorem 3.16 (Greither-Popescu, [19]). Let F/K be as above. Let l be an odd
prime and assume that the Iwasawa µ–invariant µF,l associated to F and l vanishes.
Assume that f ′ is a proper OK–ideal divisible by all the primes dividing f l. Then,
for all prime OK–ideals b coprime to f ′ · wF , we have

Θ0(b, f
′) ∈ AnnZl[G(F/K)](CH

1(F )0Tb
⊗ Zl).

Remark 3.17. Recall that a major conjecture in number theory due to Iwasawa
states that µF,l = 0, for all primes l. At this point, this conjecture is only known to
hold if F is an abelian extension of Q. The general belief is that it holds in general.

For a given odd prime l, the above theorem only settles an l–imprimitive form of
l–adic piece of the Brumer-Stark conjecture for F/K. That is so because the ideal
f ′ is forced to be divisible by all l–adic primes, whether these ramify in F/K or not.
Consequently, Θ0(b, f

′) is obtained by multiplying Θ0(b, f) with a Zl[G]–multiple
of the element

Π′
l|l(1− σ−1

l ),

(product taken over the l–adic primes l in K which do not divide f) which is not
invertible in Zl[G], in general, therefore leading to a weaker annihilation result. On
the other hand, for any n ∈ Z≥1, Θn(b, f

′) is obtained by multiplying Θn(b, f) with
a Zl[G]–multiple of the element

Π′
l|l(1− σ−1

l ·N ln),

which is invertible in Zl[G]. This explains why imprimitivity is not an issue in our
upcoming K–theoretic considerations.

At this point, only very partial results towards the 2–primary piece of the
Brumer-Stark conjecture have been proved, which is the reason why we are staying
away from l = 2 throughout the rest of this paper.

For a given odd prime l, we extend the divisor map divF by Zl–linearity to

divF ⊗ 1Zl
: F× ⊗ Zl → Div0S∞

(F )⊗ Zl.

However, for the sake of simplicity, we use divF to denote this extension as well,
whenever the prime l has been chosen and fixed. The following consequences of
Theorem 3.16 have identical proofs to those of Lemma 3.7, Proposition 3.8 and
Proposition 3.12, respectively.

Corollary 3.18 (imprimitive l–adic Brumer-Stark elements). Assume that the hy-
potheses of Theorem 3.16 hold. Let b be a proper OK–ideal coprime to f ′ ·wF and
let c be a fractional OF –ideal. Then, the following hold.

(i) If b is a prime not dividing c, then there exists a unique element λb,f ′(c) ∈
F×
b ⊗ Zl, such that

divF (λb,f ′(c)) = Θ0(b, f
′) · c̃.
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(ii) There exists a unique element λ̂b,f ′(c) ∈ (F×/µF )⊗ Zl, such that

divF (λ̂b,f ′(c)) = Θ0(b, f
′) · c̃.

Further, any λ ∈ F× ⊗Zl whose class in (F×/µF )⊗Zl is λ̂b,f ′(c) satisfies

λ(1+j) = 1.

Proof. The proofs of (i) and the first equality in (ii) are identical to those of equal-
ities (7) and (9), respectively. The only difference is that instead of assuming the
Brumer-Stark conjecture, here one uses Theorem 3.16. Finally, the proof of the last
equality in (ii) is identical to that of Lemma 3.7, part (i). �

Corollary 3.19 (imprimitive l–adic strong Brumer–Stark elements). Assume that
the hypotheses of Theorem 3.16 hold. Let c be a fractional OF –ideal. Let Bc,f ′(F/K)
be the set of proper OK–ideals b which are coprime to cf ′ · wF . Then, there exist
unique elements λb,f ′(c) in F× ⊗ Zl, for all b ∈ Bc,f ′(F/K)⊗ Zl, such that:

(i) divF (λb,f ′(c)) = Θ0(b, f
′) · c̃, for all b ∈ Bc,f ′(F/K).

(ii) If b is a prime ideal in Bc,f ′(F/K), then λb,f ′(c) ∈ F×
b ⊗ Zl.

(iii) If a,b ∈ Bc,f ′(F/K)⊗ Zl, then

λab,f ′(c) = λa,f ′(c)
Nb·σ−1

b · λb,f ′(c).

Moreover, for all σ ∈ G(F/K) and all b ∈ Bc,f ′(F/K) ⊗ Zl(= Bσ(c⊗Zl),f ′(F/K)),
we have

λb,f ′(σ(c)) = σ(λb,f ′(c)).

Proof. The proof is identical to that of Proposition 3.8. �

Corollary 3.20 (imprimitive l–adic Hecke characters). Assume that the hypotheses
of Theorem 3.16 hold. Fix a proper OK–ideal b, coprime to f ′·wF . Let IF (b) denote
the group of fractional OF –ideals coprime to b. Then, we have:

(i) For all c, c′ ∈ IF (b)⊗ Zl,

λb,f ′(c · c′) = λb,f ′(c) · λb,f ′(c
′).

(ii) If ε ∈ F×, such that ε ≡ 1 mod ×bOF , we have

λb,f ′(εOF ) = εΘ0(b,f
′).

(iii) The Zl–module morphism

λb,f ′ : IF (b)⊗ Zl → F× ⊗ Zl, c → λb,f ′(c)

is G(F/K)–invariant.

Proof. The proof is identical to that of Proposition 3.12(i), (ii), (iv). �

Remark 3.21. Obvious analogues of Lemmas 3.11 (norm relations) and 3.14 (ex-
tension to IF ⊗ Zl) hold for the imprimitive l–adic maps

λb,f ′ : IF (b)⊗ Zl → F× ⊗ Zl

as well. We leave the details to the interested reader. An extension of λb,f ′ to
IF ⊗ Zl as in Lemma 3.14 will be denoted by λ∗

b,f ′ . Of course, the imprimitive
l–adic analogue of Remark 3.15 holds.
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4. The Galois equivariant Stickelberger splitting map

In this section, we will construct the l–adic Galois equivariant Stickelberger
splitting map in the Quillen localization sequence associated to the top field F in
an abelian Galois extension F/K of number fields, with K totally real and F either
totally real or CM. The main idea is to use the imprimitive l–adic Brumer–Stark
elements for certain cyclotomic extensions of F along with powers of Bott elements
to construct special elements in the K–theory of the top field F . Then, one uses
these special elements to construct the desired Galois equivariant splitting map.

From now on, we fix an abelian extension F/K as above, denote by G its Galois
group, fix an odd prime l and work under the assumption that Iwasawa’s conjecture
on the vanishing of the µ–invariant associated to F and l holds. Further, we fix
nontrivial OK–ideals f and b, with f divisible by the (finite) conductor of F/K and
b coprime to lf .

In the case K = Q, a Stickelberger splitting map was constructed in [1]. The
construction in loc. cit. was refined in [4], [5]. However, none of these constructions
led to Galois equivariant splitting maps.

In [6], we constructed a Galois equivariant Stickelberger splitting map for ar-
bitrary totally real base fields K. However, that construction was very different
from the one we are about to describe in that it relies on a different class of special
elements in the K–groups of the top field F .

4.1. K–theoretic tools. In what follows, we will use freely K–theory with(out)
coefficients as well as the theory of Bockstein morphisms and that of Bott elements
at the level of K–theory with coefficients. For the precise definitions and main
properties the reader can consult §3 in [6]. However, just to set the notations, we
will briefly recall the main objects and facts.

Let R be a unital ring and l be an odd prime number. Then the K–groups with
coefficients Kn(R,Z/lk), n ≥ 1, k ≥ 1, sit inside short exact sequences

(13) 0 // Kn(R)/lk // Kn(R,Z/lk) b=bR // Kn−1(R)[lk] // 0 ,

where b (sometimes denoted bR, to emphasize dependence on the ring) is the Bock-
stein morphism associated to R, n and lk. We remind the reader that once lk and
n are fixed, b and the exact sequences above are functorial in R.

If we assume that the characteristic of R is not l and that R contains the group
µlk of lk–roots of unity and fix a generator ξlk of µlk , then we have canonical
special elements β(ξlk) in K2(R,Z/lk) called Bott elements. Consequently, the
product structure “∗” at the level of K–theory with coefficients leads to canonical
elements β(ξlk)

∗n in K2n(R,Z/lk), for all n ≥ 1. For given lk and n, the elements
β(ξlk)

∗n are functorial in R and the chosen ξlk in the obvious sense.

4.2. Constructing maps Λv. In this section, we fix an integer n ≥ 1, an odd
prime l, and a nonzero OF –prime v. We let kv := OF /v denote the residue field of
v. Our main goal is to construct a group morphism

Λv : K2n−1(kv)l → K2n(F )l

satisfying certain properties. Recall that the group K2n−1(kv) is cyclic of order
qnv − 1, where qv =| kv |. The idea behind constructing Λv is first to get our hands
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on an explicit generator ξv of K2n−1(kv)l and then construct an explicit element
in K2n(F )l annihilated by the order of this generator and declare that to be the
image of ξv via Λv

Obviously, if | K2n−1(kv)l |= 1, then ξv = 1 and Λv is the trivial map. So, let
us assume that | K2n−1(kv)l |= lk, for some k > 0. This implies that v - l. Also, it
is easily seen (see the proof of Lemma 2 [1, p. 336]) that this also implies that

k > vl(n),

where vl(n) denotes the usual l–adic valuation of n.
Next, we let E := F (µlk) and fix an OE–prime w sitting above v. It is easily

seen (for full proofs see the proof of Lemma 2 [1, p. 336]) that kw = kv(µlk) and
consequently that

(14) | K2n−1(kw)l |= lvl(n)+k

and that the image of the transfer map Trw/v : K2n−1(kw)l → K2n−1(kv)l satisfies

(15) Im(Trw/v) = K2n−1(kv)l.

Fix a generator ξlk of µlk inside E. By abuse of notation, we will denote by ξlk
its image in kw via the reduction modulo w map OE → OE/w = kw. This way,
we obtain a generator ξlk of µlk inside kw. A result of Browder [7] shows that
β(ξlk)

∗n is a generator of K2n(kw,Z/lk). On the other hand, since K2n(kw) = 0,
the Bockstein sequence (13) gives a group isomorphism

b : K2n(kw,Z/lk) ≃ K2n−1(kw)[l
k].

Therefore, b(β(ξlk)
∗n) is a generator of K2n−1(kw)[l

k]. Consequently, equality (15)
allows us to make the following.

Definition 4.1. Let ξv be a generator of K2n−1(kv)l, such that

(16) ξl
vl(n)

v = Trw/v(b(β(ξlk)
∗n).

Now, we proceed to the construction of a special element in K2n(F )l annihilated
by lk. Let Γ := G(E/K) and let Gv and Iv denote the decomposition and inertia
groups of v in G(F/K), respectively. Also, let

f∗E := f · l.
Note that f∗E is divisible by all the primes which ramify in E/K and all the l–adic
primes and that b and f∗E are coprime. If we denote by {ΘE

m(b, f∗E)}m≥0 the higher
Stickelberger elements associated to the data (E/K,b, f∗E), then these are all in
Zl[Γ]. Further, if we set

(17) γl :=
∏
l|l
l-f

(1− σ−1
l ·N ln)−1 ∈ Zl[G],

then we have the obvious equality

(18) ResE/F (Θ
E
n (b, f

∗
E) = Θn(b, f) · γ−1

l .

Also, note that E/K is a CM abelian extension of a totally real number field.
Consequently, Lemma 3.20 applies to the data (E/K, f∗E ,b). In particular, Remark
3.21 allows us to pick a Zl[Γ]–linear morphism

λ∗
b,f∗E

: IE ⊗ Zl → E× ⊗ Zl,
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which extends the l–adic imprimitive Hecke character λb,f∗E
of conductor b and

satisfies the properties

(19) divE(λ
∗
b,f∗E

(c)) = ΘE
0 (b, f

∗
E) · c, λ∗

b,f∗E
(c)(1+j) = 1,

for all c ∈ IE .
Let us pick an OE–prime w sitting above v. We let Γw and Iw denote its

decomposition and inertia groups in E/K. We view λ∗
b,f∗E

(w) as an element in

K1(E)l after the obvious identification E×⊗Zl ≃ K1(E)l. Consequently, we obtain
an element

λ∗
b,f∗E

(w) ∗ b(β(ξlk)∗n) ∈ K1(E)l ∗K2n−1(E)[lk] ⊆ K2n(E)[lk]

which is mapped via the usual transfer morphism TrE/F : K2n(E)l → K2n(F )l to

TrE/F (λ
∗
b,f∗E

(w) ∗ b(β(ξlk)∗n)) ∈ K2n(F )[lk].

Definition 4.2. Since the chosen generator ξv of K2n−1(kv)l has order lk, there
exists a unique Zl–linear map Λv : K2n−1(kv)l → K2n(F )l which satisfies

Λv(ξv) := TrE/F (λ
∗
b,f∗E

(w) ∗ b(β(ξlk)∗n))γl .

Remark 4.3. Note that the map Λv depends in an easily described manner on the
several choices we have made along the way: that of a prime w sitting above v in E,
that of a generator ξlk of µlk in E, that of a generator ξv of K(kv)l and, finally, that
of a Zl[Γ]–linear extension λ∗

b,f∗E
of the l–adic imprimitive Hecke character λb,f∗E

of

conductor b.

The functoriality properties of K–groups imply that we have the following obvi-
ous isomorphisms of Zl[G]– and Zl[Γ]–modules, respectively, for all m ≥ 0.
(20)

Km(kv)l ⊗Zl[Gv] Zl[G] ≃
⊕

σ̂∈G/Gv

Km(kσ(v))l, ξ ⊗ σ → (1, . . . , 1, σ(ξ), 1, . . . , 1)

(21)

Km(kw)l ⊗Zl[Γw] Zl[Γ] ≃
⊕

γ̂∈Γ/Γw

Km(kγ(w))l, ξ ⊗ γ → (1, . . . , 1, γ(ξ), 1, . . . , 1).

Above σ ∈ G, γ ∈ Γ, σ̂ and γ̂ are their classes in G/Gv and Γ/Γw, respectively,
and σ(ξ) and γ(ξ) appear in the σ(v) and γ(w)–components, respectively. In what
follows, we will freely identify the left and right hand sides of these isomorphisms.
In particular, if ξ ∈ Km(kw)l (or ξ ∈ Km(kv)l) and α ∈ Zl[Γ] (or α ∈ Zl[G]), then
ξ ⊗ α will also be sometimes denoted by ξα and thought of as an element in the
direct sum on the right hand side of isomorphisms (20) and (21).

Remark 4.4. Let us note that if we set c := w, then (19) can be rewritten as

(22) ∂E(λ
∗
b,f∗E

(w)) = ∂E,Γ·w(λ
∗
b,f∗E

(w)) = 1⊗ΘE
0 (b, f

∗
E),

where ∂E,Γ·w : K1(E)l →
⊕

γ̂∈Γ/Γw
K0(kγ(w))l is the Γ · w–supported boundary

map and we identify⊕
γ̂∈Γ/Γw

K0(kγ(w))l ≃ K0(kw)l ⊗Zl[Γw] Zl[Γ] ≃ Zl ⊗Zl[Γw] Zl[Γ]
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as in the last displayed isomorphism above for m = 0. Also, let us note that since
K2n−1(kv)l is a cyclic group (also cyclic Zl[Gv]–module) generated by ξv, we have⊕

σ̂∈G/Gv

K2n−1(kσ(v))l ≃ K2n−1(kv)l ⊗Zl[Gv] Zl[G] = Zl[G] · (ξv ⊗ 1).

Therefore,
⊕

σ̂∈G/Gv
K2n−1(kσ(v))l is a cyclic Zl[G]–module generated by ξv.

Theorem 4.5. The map Λv defined above satisfies the following properties.

(1) It is Zl[Gv]–linear.
(2) If ∂F,G·v : K2n(F )l →

⊕
σ̂∈G/Gv

K2n−1(kσ(v))l is the G·v–supported bound-

ary map then, after the identification (20) for m := 2n− 1, we have

∂F (Λv(ξ)) = ∂F,G·v(Λv(ξ)) = ξl
vl(n)·Θn(b,f),

for all ξ ∈ K2n−1(kv)l.

Proof. (1) Let σ ∈ Gv. Assume that σ = σα
v · ρ, where σv is a v–Frobenius lift

(from Gv/Iv to Gv), α ∈ Z≥0 and ρ ∈ Iv. Since Λv is Zl–linear, we have

Λv(σ(ξv)) = Λv(σ
α
v (ξv)) = Λv(ξ

qnα
v

v ) = Λv(ξv)
qnα
v .

Now, let us consider a lift σ ∈ Γw of σ of the form σ = σα
w · ρ, where σw is a

w–Frobenius lift in Γw which restricts to σv and ρ ∈ Iw restricts to ρ. We have

σ(λ∗
b,f∗E

(w)) = λ∗
b,f∗E

(σ(w)) = λ∗
b,f∗E

(w).

Also, since v - l, we have σ(ξlk) = σα
w(ξlk) = ξ

qαv
lk
. Consequently, the functoriality of

the Bockstein and Bott maps b and β, respectively, gives

σ(b(β(ξlk)
∗n)) = b(β(ξlk)

∗n)q
nα
v .

The last two displayed equalities imply that

σ(Λv(ξv)) = σ ◦ TrE/F (λ
∗
b,f∗E

(w) ∗ b(β(ξlk)∗n))γl =

TrE/F ◦ σ(λ∗
b,f∗E

(w) ∗ b(β(ξlk)∗n))γl = TrE/F (σ(λ
∗
b,f∗E

(w)) ∗ σ(b(β(ξlk)∗n)))γl =

TrE/F (λ
∗
b,f∗E

(w) ∗ b(β(ξlk)∗n))q
nα
v γl = Λv(ξv)

qnα
v .

Consequently, Λv(σ(ξv)) = σ(Λv(ξv)), which concludes the proof of (1).

(2) Note that since K2n−1(kv)l is generated by ξv and Λv is Zl[Gv]–linear, it suf-
fices to prove (2) for ξ := ξv. For that purpose, we need the following commutative
diagrams in the category of Z[Γ]–modules. The first of these is diagram 4.7 in [1]:

(23) K1(E)×K2n−1(OE)

⊕w(∂E,w×redw)

��

∗ // K2n(OE)

∂E

��⊕
w(K0(kw)×K2n−1(kw))

∗ //⊕
w K2n−1(kw).

Above,w runs through all nonzeroOE–primes and redw : K2n−1(OE) → K2n−1(kw)
is the map at the level of K–groups induced by the reduction modulo w morphism
OE → OE/w = kw. In particular, note that the functoriality of the Bockstein and
Bott maps b and β implies that we have

(24) redw(bE(β(ξlk)
∗n)) = bw(β(ξlk)

∗n),

where w is the chosen OE–prime sitting above the chosen OF –prime v.
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The second commutative diagram is diagram 4.1 in [1]:

(25) K2n(E)
∂E //

TrE/F

��

⊕
v(
⊕

w|v K2n−1(kw))

⊕
v(

∏
w|v Trw/v)=:Tr

��
K2n(F )

∂F //⊕
v K2n−1(kv)

where v runs through all nonzero OF –primes.
Diagram (25) above yields the equality

(26) ∂F (Λv(ξv)) = Tr(∂E(λ
∗
b,f∗E

(w) ∗ bE(β(ξlk)∗n)))γl .

Since µlk ⊆ E×, we have lk | wn(E)l. This observation combined with the functori-
ality of the maps b and β lead to the following equality in

⊕
γ̃∈Γ/Γw

K2n−1(kγ(w))[l
k].

bγ(w)(β(ξlk)
∗n) = bw(β(ξlk)

∗n)tn(γ), for all γ ∈ Γ,

where tn : Zl/wn(E)l[Γ] ≃ Zl/wn(E)l[Γ] is the map defined right before Theorem
2.4. Consequently, (23) above, combined with equalities (22) and (24) yield

∂E(λ
∗
b,f∗E

(w) ∗ bE(β(ξlk)∗n)) = {bw(β(ξlk)∗n)}tn(
̂ΘE
0 (b,f∗E)),

where the notations are as in Theorem 2.4. Now, Theorem 2.4 implies that we have

tn(
̂ΘE
0 (b, f

∗
E)) =

̂ΘE
n (b, f

∗
E) in Zl/wn(E)l[Γ].

Consequently, the last two displayed equalities imply that

∂E(λ
∗
b,f∗E

(w) ∗ bE(β(ξlk)∗n)) = {bw(β(ξlk)∗n)}Θ
E
n (b,f∗E).

Now, combine the last equality successively with (26), (16) and (18) to obtain

∂F (Λv(ξv)) = Trw/v(bw(β(ξlk)
∗n))γl·Θn(b,f)·γ−1

l = ξl
vl(n)·Θn(b,f)
v .

This concludes the proof of the theorem. �

4.3. Constructing a map Λ. For every nonzero OK–prime v0, we pick an OF –
prime v | v0. The isomorphisms (20) for m := 2n− 1 yield an explicit isomorphism
of Zl[G]–modules⊕

v′

K2n−1(kv′)l ≃
⊕
v0

(
Zl[G]⊗Zl[Gv ] K2n−1(kv)l

)
,

where v′ runs over all the nonzero OF –primes and v0 runs over all the nonzero OK–
primes. For each chosen v, we construct a map Λv : K2n−1(kv)l → K2n−1(F )l as in
the previous section. Since each of these maps Λv is Zl[Gv]–linear (see Theorem 4.5
(2)), the isomorphism above implies that there exists a unique Zl[G]–linear map

Λ :
⊕
v′

K2n−1(kv′)l → K2n(F )l

which equals Λv when restricted to K2n−1(kv)l for each of the chosen primes v.
Obviously, after identifying the two sides of the isomorphism above, this unique
Zl[G]–linear map is given by

(27) Λ :=
∏
v0

(1⊗ Λv).

Theorem 4.6. The map Λ defined above satisfies the following.
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(1) It is Zl[G]–linear.
(2) For all ξ ∈

⊕
v′ K2n−1(kv′)l, we have

(∂F ◦ Λ)(ξ) = ξl
vl(n)·Θn(b,f).

Proof. Part (1) is a direct consequence of (27) and Theorem 4.5(1). Part (2) is a
direct consequence of (27) and Theorem 4.5(2). �

5. The Stickelberger splitting map and the divisible elements

In this section, we will use the special elements in the even K–groups of a
totally real or CM number field constructed in the previous section to investigate
the Galois module structure of the groups of divisible elements in these K–groups.
In particular, this will lead to a reformulation and a possible generalization of a
classical conjecture of Iwasawa.

The following technical lemma extends the computations in [5, p. 8-9] and will
be needed shortly.

Lemma 5.1. Let L/F be a Galois extension of number fields. Let LH be the Hilbert
class field of L. Let l be a prime such that LH ∩ L(µl∞) = L. Let p ⊂ OL be a
prime. For any positive integer m >> 0 there exist infinitely many primes q ⊂ OL,
with q - l, such that:

(1) [q] = [p] in Cl(OL).
(2) lm || Nq− 1.
(3) q ∩OF splits in L/F .

Proof. Let m ∈ Z>0 sufficiently large so that L(µlm) ̸= L(µlm+1). Since L(µlm+1)∩
LH = L, there exists a unique σ ∈ G(L(µlm+1)LH/F ) such that σ|LH = Frp,
σ|L(µlm+1 ) is a generator of G(L(µlm+1)/L(µlm)), where Frp is the Frobenius au-

tomorphism associated to p in G(LH/L). Note that, by definition σ|L = Id and

therefore σ ∈ G(G(L(µlm+1)LH/L), which is an abelian Galois group.
By Chebotarev’s density theorem, there are infinitely many primes q ⊂ OK such

that q - l and σ = F̃ rq, where F̃ rq is (any) Frobenius automorphism associated to
q in G(L(µlm+1)LH/F ). Let q be a prime in OL sitting above q.

Since σ|L = Id, q = q ∩OF splits completely in L/F .

Since F̃ rq |L(µlm+1 ) is a generator of G(L(µlm+1)/L(µlm)), we have

F̃ rq(ξ) = ξNq = 1, for all ξ ∈ µlm ,

and F̃ rq(ξ) = ξNq ̸= 1 for a generator ξ of µlm+1 . Consequently, lm || Nq− 1.
Finally, if we denote by Frq the Frobenius morphism associated to q inG(LH/L),

we have Frq = F̃ rq |LH = Frp. Consequently, Artin’s reciprocity isomorphism

Cl(OL) → G(LH/L), [a] → Fra,

implies that [p] = [q] in Cl(OL). �

We work with the notations and under the assumptions of the previous section.
In addition, we will assume from now on that the odd prime l does not divide
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the order |G| of the Galois group G := G(F/K). We denote by Ĝ(Ql) the set of

irreducible Ql–valued characters of G. For χ ∈ Ĝ(Ql) we let

eχ := 1/|G|
∑
g∈G

χ(g) · g−1

denote its associated idempotent element in Zl[χ][G]. Also, we will let

ẽχ :=
∑

σ∈G(Ql/Ql)

eχσ .

Note that ẽχ is the irreducible idempotent in Zl[G] associated to the irreducible
Ql–valued character χ̃ =

∑
σ∈G(Ql/Ql)

χσ of G. Also, note that ẽχ only depends on

the orbit of χ under the natural action of G(Ql/Ql) on Ĝ(Ql). In what follows, we

denote the set of such orbits by Ĝ(Ql) and think of χ̃ as an element of Ĝ(Ql), for

every χ ∈ Ĝ(Ql). Obviously, we have

Zl[G] =
⊕

χ̃∈Ĝ(Ql)

ẽχZl[G], ẽχZl[G] ≃ Zl[χ],

where the ring isomorphism above sends x → χ(x), for every x ∈ ẽχZl[G] and

χ ∈ Ĝ(Ql). Also, for every Zl[G]–module M we have

(28) M =
⊕

χ̃∈Ĝ(Ql)

ẽχM,

where ẽχM is a ẽχZl[G]–module in the obvious manner. From now on, we denote

Mχ := ẽχM

and view it as a Zl[χ]–module via the ring isomorphism ẽχZl[G] ≃ Zl[χ] described
above. Obviously, M → Mχ are exact functors from the category of Zl[G]–modules
to that of Zl[χ]–modules. If f : M → N is a morphism of Zl[G]–modules, then
fχ : Mχ → Nχ denotes its image via the above functor. Also, if M is as above
and x ∈ M , then xχ := ẽχ · x will be viewed as an element in Mχ. In particular,
if x ∈ Zl[G], then we identify xχ with χ(x) ∈ Zl[χ] via the ring isomorphism
ẽχZl[G] ≃ Zl[χ] described above.

From now on, we fix an embedding C ↪→ Cl. As a consequence, the higher Stick-
elberger elements Θn(b, f) will be viewed in Zl[G] ⊆ Cl[G]. Also, this embedding

identifies Ĝ(C) and Ĝ(Ql). Therefore, Remark 2.5 and the conventions made above

give the following equality in Zl[χ], for all χ ∈ Ĝ(Ql):

(29) Θn(b, f)
χ = (1−Nbn+1 · χ(σb)

−1) · Lf (χ
−1,−n).

Let us fix χ ∈ Ĝ(Ql) and n ≥ 1. Consider the χ component of the Quillen
localization sequence (1):

(30) 0 → K2n(OF )
χ
l → K2n(F )χl

∂χ
F−→
⊕
v0

(⊕
v|v0

K2n−1(kv)l
)χ → 0.

Observe that since
⊕

v|v0
K2n−1(kv)l is a cyclic Zl[G]-module generated by ξv (see

(20) in the previous section),
(⊕

v|v0 K2n−1(kv)l
)χ

is a cyclic Zl[χ]–module gener-

ated by ξχv . It is easily seen that since K2n−1(kv)l ≃ Z/lk (with notations as in the
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previous section), isomorphisms (20) imply that

(31) ord(ξχv ) = lk, whenever ξχv ̸= 1.

Now, since the map Λ constructed in the previous section is Zl[G]–equivariant,
Theorem 4.6 implies that we have

(32) ∂χ
F ◦ Λχ (ξ) = ξl

vl(n)Θn(b,f)
χ

, for all ξ ∈
⊕
v0

(⊕
v|v0

K2n−1(kv)l
)χ

.

Definition 5.2. If A is an abelian group, we denote by div(A) its subgroup of
divisible elements. In other words, we let

div(A) =
∩
r≥1

Ar.

Let D(n) := div(K2n(F )). It is easy to see that we have

(33) D(n)χl = div(K2n(F )χl ),

for all χ as above. Also, observe that (30) combined with the finiteness of the
Quillen K–groups of finite fields implies right away that for all χ and n we have

(34) D(n)χl ⊂ K2n(OF )
χ
l .

Simplifying Hypothesis: From now on we assume that all primes above l are
ramified in F (µl)/K and totally ramified in F (µl∞)/F (µl).

Theorem 5.3. Let χ ∈ Ĝ(C) and assume that vl(n) = 0 and Θn(b, f)
χ ̸= 0. Then

(35) K2n(OF )
χ
l ∩ Im(Λχ) = D(n)χl .

In particular, if vl(n) = 0 and Θn(b, f)
χ ̸= 0 for all χ ∈ Ĝ(C), then

(36) K2n(OF )l ∩ Im(Λ) = D(n)l.

Proof. Note that the exactness of the functors M → Mχ combined with (28) shows

that equality (36) follows from equalities (35), for all χ ∈ Ĝ(C). So, we proceed
with the proof of (35).

First, take d ∈ D(n)χl and take a natural number m such that

lm > lvl(Θn(b,f)
χ)|K2n(OF )

χ
l |.

Write d as d = xlm , for some x ∈ K2n(F )χl . By (32), we have

(37) ∂χ
F ◦ Λχ ◦ ∂χ

F (x) = ∂χ
F (x)

Θn(b,f)
χ

Hence, we have

(38) Λχ ◦ ∂χ
F (x) = xΘn(b,f)

χ

y

for an element y ∈ K2n(OF )
χ
l . Raising (38) to the power Dχ := lm · |Θn(b, f)

χ|−1
l

gives:

(39) Λχ ◦ ∂χ
F (x

Dχ) = xlm = d.

Hence, we have d ∈ K2n(OF )
χ
l ∩ Im Λχ.
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Now, assume that y ∈ K2n(OF )
χ
l ∩ Im Λχ. For each prime v0 - l of OK fix a

prime v|v0 in OF . With notations as in the previous section, we can write

(40) y =
∏
v

Λχ(ξχv )
cv ,

where cv ∈ Zl[χ]. Since ∂χ
K(y) = 1, (32) implies that

(ξχv )
cvΘn(b,f)

χ

= 1,

for each of the chosen primes v. This, combined with (31) implies that

(41) lk | cvΘn(b, f)
χ, whenever ξχv ̸= 1.

Now, let us fix one of the chosen primes v and assume that ξχv ̸= 1. With
notations as in the previous section, (27) and Theorem 4.6(1) imply that

(42) Λχ(ξχv ) = ẽχ · TrE/F (λ
∗
b,f∗E

(w) ∗ b(β(ξlk)∗n))γl .

Let m ∈ Z≥k be any integer such that

(43) lm−k ≥ | K2n(OF )l |
Since all the l–adic primes are totally ramified in the extension F (µl∞)/F (µl),
Lemma 5.1 applied to the extension E/F allows us to choose a prime w2 of E
which is coprime to bl such that: v2 := w2 ∩ OF splits completely in E/F , and
[w] = [w2] ∈ Cl(OE), and lm || (Nw2−1) for m large. Since vl(n) = 0 and v2 splits
completely in E/F , we have lm = |K2n−1(kv2)l|. Let w̃2 be a prime of E(µlm) over
w2. Under our simplifying hypothesis, the projection formula (see [41], Chapter
V, §3.3.2) combined with Lemma 3.11, Remark 3.10 and Lemma 5.1(2) gives the
following relation:

Λ(ξv2)
lm−k

= TrE(µlm )/F (λ
∗
b,fE (w̃2) ∗ b(β(ξlm)∗n))γl·lm−k

=

= TrE(µlm )/F (λ
∗
b,fE (w̃2) ∗ b(β(ξlk)∗n))γl =

(44) = TrE/F (λ
∗
b,fE (w2) ∗ b(β(ξlk)∗n))γl

By our choice of w2 and Corollary 3.18, we have

(45) λ∗
b,fE (w2) = λ∗

b,fE (w)α
Θ0(b,fE)u

for some α ∈ E×⊗Zl and u ∈ µE ⊗Zl. Since l is odd, u = NE(µlm )/E(u2) for some
u2 ∈ µE(µlm ) ⊗ Zl. Consequently, by the projection formula and (43),

(46) TrE/F (u ∗ b(β(ξlk)∗n))γl = TrE(µlm )/F (u2 ∗ b(β(ξlm)∗n))γl)l
m−k

= 1.

Now, the projection formula combined with Theorem 2.4 gives

(47) b(TrE/F (α
Θ0(b,fE) ∗ β(ξlk)∗n)γl)cv = b(TrE/F (α ∗ β(ξlk)∗n))

cv Θn(b,f)

Hence, if we multiply (47) by ẽχ and apply (41), we obtain:

(48)

ẽχb(TrE/F (α
Θ0(b,fE) ∗ β(ξlk)∗n)γl)cv = ẽχb(TrE/F (α ∗ β(ξlk)∗n))

cv Θn(b,f)
χ

= 1.

Now (44), (45), (46) and (48) imply that:

(49) Λχ(ξχv )
cv = Λχ(ξχv2

)cvl
m−k

.
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The product in (40) ranges in fact over a finite set of primes v that depends on y
and m is arbitrarily large. Hence (40) and (49) show that d ∈ D(n)χl . �

If we restrict Theorem 5.3 to the situation K = F , we obtain the following
condition for the cyclicity of the group of divisible elements D(n)l in K2n(K)l, for
an arbitrary totally real number field K, under certain hypotheses.

Theorem 5.4. Let K be a totally real number field, l an odd prime, and n ≥ 1
an odd integer such that vl(n) = 0. Let D(n)l be the group of divisible elements
in K2n(K)l. Assume that K satisfies the simplifying hypothesis above and that
|
∏

v|l wn(Kv)|l = 1. Then, the following conditions are equivalent:

(1) The group D(n)l is cyclic.
(2) There exists a prime ideal v0 and an OK–ideal b coprime to wn+1(K)l such

that |K2n−1(kv0)l| is divisible by |(1−Nbn+1)ζK(−n)|−1
l and the map

Λv0 : K2n−1(kv0)l → K2n(K)l

associated to the data (K/K,n, l,b, v0) is injective.

Proof. We start with a few preliminary remarks. Let b be an OK–ideal coprime to
wn+1(K). Note that since K is totally real and n is odd, we have

(1−Nbn+1)ζK(−n) ̸= 0.

(See [23], p. 198.) Consequently, Theorem 5.3 applies to the data (K/K,n, χ = 1).
Construct a map Λ for the data (K/K,n, l,b) as in the previous section. By
Theorem 5.3 (see (36)) and (41) we can write every y ∈ D(n)l as

(50) y =
∏
v

Λ(ξv)
cv ,

where cv ∈ Zl are such that

(51) ord(ξv) | cv(1−Nbn+1)ζK(−n),

for each prime v in OK . Hence, if we apply ∂K to (50), we can conclude that
Λ(ξv)

cv ∈ K2n(OK)l for each v. So, again, by Theorem 5.3 (equality (36)) we have

(52) Λ(ξv)
cv ∈ D(n)l, for all v.

Now, [2, Theorem 3 (ii)] and our assumption that |
∏

v|l wn(Kv)|l = 1 imply that

(53) |D(n)l| = |wn+1(K)ζK(−n)|−1
l .

Since wn+1(K) = gcd (Nbn+1 − 1) where the gcd is taken over ideals b coprime
with wn+1(K), there is an ideal b, coprime with wn+1(K)l, such that

(54) |wn+1(K)ζK(−n)|−1
l = |(1−Nbn+1)ζK(−n)|−1

l

(1) ⇒ (2). If D(n)l is trivial, then any l–adic prime v0 satisfies the conditions
in (2). Assume that D(n)l is cyclic and nontrivial. Let b be an OK–ideal satisfying
(54). Construct a map Λ for the data (K/K,n,b). Relations (50) and (52) imply
that there exists an OK–prime v0 such that Λv0(ξv0)

cv0 is a generator of D(n)l.
(Take a v0 such that Λv0(ξv0)

cv0 has maximal order.) By (53) we have

|wn+1(K)ζK(−n)|−1
l = |(1−Nbn+1)ζK(−n)|−1

l = ord(Λv0(ξv0)
cv0 ) ≤ ord(ξv0).

Since ξv0 is a generator of |K2n−1(kv0)l|, this implies that

|(1−Nbn+1)ζK(−n)|−1
l | |K2n−1(kv0)l|.
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Moreover, the map Λv0 must be injective. Indeed, if ord(ξv0) = 1 this is clear. If
ord(ξv0) > 1 and ord(Λv0(ξv0)) < ord(ξv0), then 1 < ord(Λv0(ξv0)

cv0 ) < ord(ξ
cv0
v0 ).

But this is impossible, since Λv0(ξv0)
cv0 has order |wn+1(K)ζK(−n)|−1

l and this

number also annihilates ξ
cv0
v0 by (51).

(2) ⇒ (1). Let rv0 := |K2n−1(kv0)l|. Consequently, the number

cv0 :=
rv0

wn+1(K)ζK(−n)

has nonnegative l–adic valuation. Moreover, by Theorem 4.5 we have

∂K(Λv0(ξv0)
cv0 ) = ξ

rv0
v0 = 1.

Consequently, Λ(ξv0)
cv0 ∈ K2n(OK)l. Hence by Theorem 5.3 (equality (36)) we

have Λv0(ξv0)
cv0 ∈ D(n)l. Since Λv0 is injective, we have

ord(Λv0
(ξv0

)cv0 ) = |wn+1(K)ζK(−n)|−1
l .

Now, (53) implies that D(n)l is cyclic generated by Λv0
(ξv0)

cv0 . �

The following technical lemma refines the implication (1) =⇒ (2) in the above
theorem and will be needed in the next section.

Lemma 5.5. Assume the hypotheses of Theorem 5.4, and assume that D(n)l is
cyclic. Then for any OK–ideal b which is coprime to wn+1(K)l and such that

(55) (1−Nbn+1)Zl = wn+1(K)lZl

and any integer m >> 0, there exist infinitely many OK–primes v such that Λv is
injective and lm | (Nv − 1).

Proof. Let us fix a b which satisfies (55). The proof of (1) =⇒ (2) in Theorem 5.4
shows that if one has an OK–ideal v0 such that |(1−Nbn+1)ζK(−n)|−1

l | (Nvn0 −1)
and Λv0(ξv0)

cv0 generates D(n)l for some cv0 ∈ Z, then the map Λv0 is injective.
Let us fix a v0 and a cv0 satisfying all these properties.

Let m ∈ Z≥k such that

lm−k ≥ max
{
|(1−Nbn+1)ζK(−n)|−1

l , |K2n(OK)l|
}
.

The technique developed in the proof of Theorem 5.3 allows us to construct infinitely
many OK–primes v which are coprime to bl and which satisfy

lm | (Nv − 1), Λv(ξv)
cv0 ·l

m−k

= Λv0(ξv0)
cv0 .

(See (49) and the arguments preceding it.) For any such prime v, we have

|(1−Nbn+1)ζK(−n)|−1
l | (Nvn − 1)

and Λv(ξv)
cv0 ·l

m−k

generates D(n)l. Consequently, the map Λv is injective. �

In the particular case K = Q, the above theorem is closely related to a classical
conjecture of Iwasawa. We make this link explicit in what follows. For that purpose,
let A be the l-torsion part of the class group of Z[µl]. Let ω : G(Q(µl)/Q) → Z×

l

be the Teichmüller character. For every i ∈ Z≥0, let eωi ∈ Zl[G(Q(µl)/Q)] be the
idempotent associated to ωi. View A as a Zl[G(Q(µl)/Q)]–module and let

A[i] := Aωi

= eωiA,

in the notations used at the beginning of this section.
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Conjecture 5.6. (Iwasawa) A[l−1−n] is cyclic for all n odd, 1 ≤ n < l − 1.

Recall the following result (see [4], [5]):

Proposition 5.7. Let n be odd, 1 ≤ n < l− 1. Then A[l−1−n] is cyclic if and only
if D(n)l is cyclic, where D(n)l is the group of divisible elements in K2n(Q)l.

In the next section, we will give a new proof of this result (see Theorem 6.4),
based on our construction of the Galois equivariant Stickelberger splitting map
Λ. For the moment, let us simply observe that if combined with Proposition 5.7,
Theorem 5.4 gives the following equivalent formulation of Iwasawa’s conjecture in
terms of our map Λ.

Corollary 5.8. Let n be an odd integer such that 1 ≤ n < l − 1. The following
conditions are equivalent:

(1) The group A[l−1−n] is cyclic.
(2) The group D(n)l is cyclic.
(3) There exists a prime number p and an integer b ∈ Z≥1 coprime to wn+1(Q)l

such that |(1− bn+1)ζQ(−n)|−1
l divides |K2n−1(Fp)l| and the map

Λp : K2n−1(Fp)l → K2n(Q)l

associated to the data (Q/Q, n, l, bZ, p) is injective.

Proof. This is a direct consequence of Theorem 5.4 upon observing that vl(n) = 0
and |wn(Ql)|l = 1, for each n odd and 1 ≤ n < l − 1 and also that Q satisfies our
simplifying hypothesis for all odd primes l. �
Remark 5.9. In light of Theorem 5.4 and Corollary 5.8, the question regarding
the cyclicity of D(n)l ∈ K2n(K)l may be viewed as an extension of Iwasawa’s
conjecture to arbitrary totally real number fields K, under the obvious hypotheses
on l and n. At this point we do not have sufficient data to conjecture that D(n)l
is cyclic at this level of generality. In the next section we will do a close analysis of
the injectivity of Λv0 in the case F = K = Q. In the process, we will give a new
proof of Proposition 5.7 (see Theorem 6.4.) In future work, we hope to extend the
techniques developed in the next section to more general totally real number fields
K and study a generalization of Iwasawa’s cyclicity conjecture in that setting.

6. Conditions for the injectivity of Λv0 in the case K = F = Q

In this section we assume that K = F = Q and fix an odd prime l. Next we
pick a natural number b which is coprime to l and satisfies the two conditions in
the following elementary Lemma.

Lemma 6.1. Let b be a natural number coprime to l. Then (1 − b · σ−1
b ) is a

generator of the ideal AnnZl[G(Q(µl)/Q)](µl) if and only if the following conditions
are simultaneously satisfied.

(1) ω(b) is a generator of µl−1, where ω : (Z/lZ)× → µl−1 is the Teichmüller
character and b := b mod l.

(2) b ̸≡ ω(b) mod l2Zl.

Proof (sketch.) Note that there is a Zl–algebra isomorphism

Zl[G(Q(µl)/Q)] ≃
l−2⊕
i=0

Zl,
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sending σ → (ωi(σ))i, for all σ ∈ Zl[G(Q(µl)/Q)]. Under this isomorphism the
ideal AnnZl[G(Q(µl)/Q)](µl) is sent into Zl ⊕ lZl ⊕ Zl ⊕ · · · ⊕ Zl. Consequently, the

group ring element (1− b · σ−1
b ) generates AnnZl[G(Q(µl)/Q)](µl) if and only if

(56) l || (1− b · ω(b)−1), l - (1− b · ω(b)−i), for all i ̸≡ 1 mod (l − 1)

These are exactly conditions (2) and (1) in the Lemma, respectively. �
Remark 6.2. If b is chosen as above, then we also have

wn+1(Q)Zl = (1− bn+1)Zl,

for all n ∈ Z≥0, as one can easily prove based on relations (56).

Let n be an odd natural number, with l - n. Let v0 be a rational prime such that

v0 ≡ 1 mod l, v0 - b, vl((1− bn+1)ζK(−n)) ≤ vl(|K2n−1(kv0)l|).
Note that since |K2n−1(kv0)l| = vn0 − 1, once n and b are fixed the set of such
primes v0 has positive density, as a consequence of Chebotarev’s density theorem.

In this context, our goal is to analyze the injectivity of the map

Λv0 : K2n−1(kv0)l → K2n(Q)l.

We resume the notations of §4. In particular, if vl(v0
n − 1) = k, then E := Q(µlk)

and w is a prime sitting above v0 in E. Since in this case the exponent γl = (1−ln)−1

lies in Z×
l and it does not affect injectivity, in order to simplify notations we work

with the following slightly modified definition of Λv0 .

(57) Λv0(ξv0) = b(TrE/Q(λb,fE (w) ∗ β(ξlk)∗n)) = TrE/Q(b(λb,fE (w) ∗ β(ξlk)∗n)),

where ξv0 is the distinguished generator of K2n−1(kv0)l picked in §4. Note that
since w - b, λ∗

b,fE
(w) = λb,fE (w) in this case.

Now, let us note that since vl(v0−1) > 0, vl(v0
n−1) = k and vl(n) = 0, we have

vl(v0 − 1) = k. Consequently, v0 splits completely in E and qw = v0. Therefore,
the arguments at the beginning of §4.2 (see equality (15)) imply that all arrows in
the following commutative diagram are isomorphisms.

K2n(kw, Z/lk)
bw
∼=

//

Trw/v0
∼=
��

K2n−1(kw)l

Trw/v0
∼=
��

K2n(kv0 , Z/lk)
bv0
∼=

// K2n−1(kv0)l

Consider the following commutative diagram:

K2n+1(E, Z/lk)

TrE/K

��

K2n(kw, Z/lk)
Λ

w, lkoo

Trw/v0
∼=
��

K2n+1(K, Z/lk) K2n(kv0 , Z/lk)
Λ

v0, lkoo

where the horizontal arrows are defined as follows:

(58) Λw, lk(β(ξlk)
∗n) := λb,fE (w) ∗ β(ξlk)∗n,

(59) Λv0, lk(Tr(β(ξlk)
∗n)) := TrE/Q(λb,fE (w) ∗ β(ξlk)∗n)
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So, we can rewrite

(60) Λv0(ξv0
) = b ◦ TrE/K ◦ Λw,lk(β(ξlk)

∗n) = TrE/Q ◦ b ◦ Λw,lk(β(ξlk)
∗n).

Remark 6.3. Note that in the case under consideration, we have

Θ0(b, fE) = (1− b · σ−1
b ) ·

∑
a∈(Z/lk)×

ζlk(σa, 0) · σ−1
a =

(61) = (1− b · σ−1
b ) ·

∑
a∈(Z/lk)×

(
1

2
− a

lk
) · σ−1

a ,

where the second sum above is taken with respect to all 1 ≤ a < lk, with l - a. The
projection of Θ0(b, fE) to Z[G(E1/Q)], where E1 := Q(µl), is given by

Θ0(b, fE1) = (1− b · σ−1
b ) ·

∑
a∈(Z/l)×

(
1

2
− a

l
) · σ−1

a .

Via the first condition in (56), it is clear that ω(Θ0(b, fE1)) ̸≡ 0 mod l. Thus,

Θ0(b, fE1
) ̸∈ lZl[G(E1/Q)].

This implies in particular that

(62) Θ0(b, fE) ̸∈ lZl[G(E/Q)].

Now, we begin our study of the injectivity of Λv0 , for the chosen l, n,b, v0. We
will use expression (60) for Λv0 . As Steps I and II below will show, the map b◦Λw,lk

turns out to be injective unconditionally. The point where Iwasawa’s cyclicity
conjecture (Conjecture 5.6) comes into play is when one analyzes the injectivity of
TrE/Q restricted to Im(b ◦ Λw,lk), as it will be made clear in Step III below.

Step I. The unconditional injectivity of Λw, lk .

By the definition of λb,fE (w), its Arakelov divisor is

(63) divE(λb,fE (w)) = (1− b · σ−1
b ))

∑
a∈(Z/lk)×

(
1

2
− a

lk
) · σ−1

a (w).

Since v0 splits completely in E/Q, (62) implies that

(64) divE(λb,fE (w)) /∈ l ·Div0S∞
(E).

Consequently, we have

(65) λb,fE (w) /∈ µE · (E×)l .

Consider the following commutative diagram.

(66) K2n+1(E, Z/lk)

��

K2n(kw, Z/lk)
Λ

w, lkoo

∼=
��

H1(E, Z/lk(n+ 1)) H0(kw, Z/lk(n))
Λet

w, lkoo

The vertical arrows are the Dwyer-Friedlander maps [16] and the right vertical arrow
is an isomorphism [16, Corollary 8.6]. The bottom horizontal arrow is defined by

(67) Λet
w, lk(ξ

⊗n
lk

) := λb,fE (w) ∪ ξ⊗n
lk

.
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Since ξlk ∈ µE it is clear, by (65), that the map Λet
w, lk is injective. Hence the map

Λw, lk is also injective.

Step II. The unconditional injectivity of the map (b ◦ Λw, lk).

Consider the following commutative diagram with exact rows and surjective vertical
arrows. (Surjectivity follows from [16, Theorem 8.5]. See also [36, Thm. 4, p. 278].)
(68)

0 // K2n+1(E)/lk //

����

K2n+1(E,Z/lk) b //

����

K2n(E)[lk]

����

// 0

0 // H1(E, Zl(n+1)/lk // H1(E, Z/lk(n+1))
bet // H2(E, Zl(n+1))[lk] // 0

By Step I the middle vertical arrow in (68) induces an isomorphism

(69) ImΛw, lk
∼= ImΛet

w, lk .

Hence (69) and (68) give the isomorphism

(70) ImΛw, lk ∩ Ker b ∼= ImΛet
w, lk ∩ Ker bet.

Let S denote the set of l–adic primes in E. Since H1(OE,S , Zl(n + 1)) =
H1(E, Zl(n+1)) then Ker bet ≃ H1(OE,S , Zl(n+1))/lk. Hence, isomorphism (70)
and (93) in the Appendix imply that for an element of the form λb,fE (w)

r ∗β(ξlk)∗n

we have an equivalence

(71) λb,fE (w)
r ∗ β(ξlk)∗n ∈ Ker(b) ⇐⇒ λb,fE (w)

r ∪ ξ⊗n
lk

= (ξlk
⊗(n+1))s,

for some s ∈ N. (When applying (93) it is important to note that since n is odd
and λb,fE(w)

1+j = 1, we have λb,fE (w)
r ∪ ξ⊗n

lk
∈ H1(E,Zl/l

k(n+ 1))+.)

Now, the right hand side of (71) is equivalent to λb,fE (w)
r ∈ ⟨ξlk⟩ ·E× lk . Com-

bined with (64), this implies that lk divides r. Consequently, λb,fE (w)
r ∗β(ξlk)∗n =

0. Therefore Ker(b ◦ Λw,lk) = 0.

Step III. The question of injectivity for the map TrE/Q restricted to Im (b◦Λw, lk).

At this point we use a trick which allows us to assume that k = 1. First, let
us note that Λv0 is injective if and only if Λv0 restricted to the unique subgroup
K2n−1(kv0)[l] of order l in K2n−1(kv0)l is injective. Let

ηv0 := ξl
k−1

v0
.

Observe that ηv0 is a generator of K2n−1(kv0)[l]. Observe that in our case fQ(µl) =
lZ and all the l–adic primes in Q(µl) are totally ramified in Q(µl∞)/Q(µl). Also,
recall that v0 - b. Hence if we apply Lemma 3.11, Remark 3.10 and Lemma 5.1(3)
(with K = F = Q and E1 = Q(µl)), we obtain:

NE/E1
λb,fE (w) = λb,fE1

(w1)

where w1 is a prime of OE1 below w. Hence

Λv0(ηv0) = Λv0(ξv0)
lk−1

= b(TrE/Q(λb,fE (w) ∗ β(ξlk)∗n))l
k−1

=

= b(TrE1/F (NE/E1
λb,fE (w) ∗ β(ξl)∗n)) =

= b(TrE1/Q(λb,fE1
(w1) ∗ β(ξl)∗n)).

So the injectivity of Λv0 is equivalent to the injectivity of the following map:
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(72) Λv0 : K2n−1(kv0)[l] → K2n(Q)[l]

(73) Λv0(ηv0) := b(TrE1/Q(λb,fE1
(w1) ∗ β(ξl)∗n)).

If one compares (73) and (57), it becomes clear that it is sufficient to set k = 1
and E = Q(µl) in all of the above considerations. We will use this notation for
the rest of the section. Since in this case the natural map K2n(Q)l → K2n(E)l is
injective (as l - |G(E/Q)|), the injectivity of Λv0 is equivalent to

ord (Nl ◦ b ◦ Λw, l)(β(ξl)
∗n) = l,

where Nl :=
∑l−1

c=1 σc. The reader should note that we have already showed (in
Steps I and II above for k = 1) that

ord (b ◦ Λw, l)(β(ξl)
∗n) = l.

Let ω : G(E/Q) → Z×
l denotes the Teichmüller character and let eωi ∈ Zl[G]

denote the group ring idempotent corresponding to ωi, for all i ∈ Z. Note that

(74) eωi ≡
l−1∑
c=1

− ci σ−1
c mod lZl[G].

Also, note that E×/E×l has a natural Zl[G]–module structure. For simplicity, if
x ∈ E×, we will use the notation

eωi · x := eωi · (x mod E×l)

and view this as an element in E×/E×l, for all i ∈ Z. In light of the above notation,
we have the following equalities:

(75) Nl(Λw, l(β(ξl)
∗n)) =

l−1∑
c=1

σc(λb,fE (w) ∗ β(ξl)∗n) =

=
(l−1∏
c=1

λb,fE (σc(w))
cn
)
∗ β(ξl)∗n = −eω−n(λb,fE (w)) ∗ β(ξl)∗n.

(76) Nl(Λ
et
w, l(ξ

⊗n
l )) =

l−1∑
c=1

σc(λb,fE (w) ∪ ξ⊗n
l ) =

=
(l−1∏
c=1

λb,fE (σc(w))
cn
)
∪ ξ⊗n

l = −eω−n(λb,fE (w)) ∪ ξ⊗n
l .

Now, (75) and (76) combined with the arguments at the end of Step II (applied to
k := 1) lead to the following equivalence.

(77) Nl(Λw, l(β(ξl)
∗n)) ∈ Ker(b) ⇐⇒ eω−n(λb,fE (w)) ∈ (µl · E×l)/E×l.

Now, we are ready to prove the main result of this section.

Theorem 6.4. Let l > 2 be a prime number. Let n ≥ 1 be an odd integer, such
that l - n. Let b ≥ 1 be an integer satisfying the two conditions in Lemma 6.1. As
above, let E := Q(µl). Then, the following are equivalent.

(1) D(n)l := div (K2n(Q)l) is cyclic.
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(2) There exists an OE–prime w for which

eω−n(λb,fE (w)) ̸∈ (µl · E×l)/E×l.

and which satisfies the following additional hypotheses: it is coprime to b,
it sits above a rational prime p which splits completely in E/Q, and

|(1− bn+1) · ζQ(−n)|−1
l | pn − 1.

(3) A[l−1−n] := eω−n · (Cl(OE)⊗ Zl) is cyclic.

Proof. (1) ⇐⇒ (2). Remark 6.2 and Lemma 5.5 applied to (Q/Q, n, l,b) show that
D(n)l is cyclic if and only if there exists a rational prime satisfying the additional
hypotheses in (2) for which the map Λp associated to (Q/Q, n, l,b, p) is injective.

Now, since for an OE–prime w|p, we have an equality

(Nl ◦ b ◦ Λw, l)(β(ξl)
∗n) = b(Nl(Λw, l(β(ξl)

∗n))),

(75) and (77) imply that the injectivity of Λp holds if and only if

eω−n(λb,fE (w)) ̸∈ (µl · E×l)/E×l,

for some OE–prime w sitting above p.

(2) ⇐⇒ (3). Our choice of b (see Lemma 6.1) combined with a theorem of
Mazur–Wiles (see Theorem 8.8 and the Remark which follows in the Appendix of
[25]) gives us the following equalities.

(78) | A[l−1−i] |= [Zl : ω
−i(Θ0(b, fE))Zl], for all odd i.

The reader should note that our choice of b implies that Θ0(b, fE) is a generator
of the Stickelberger ideal in Zl[G(E/Q)], denoted by R0 in the Remark following
Theorem 8.8 in loc.cit. Also, the equality in the Remark in question can be easily
extended to the case χ := ω as both sides are equal to 1 in that case.

We consider the standard exact sequence of Zl[G(E/Q)]–modules

0 // (E×/O×
E)⊗ Zl

div // Div(OE)⊗ Zl
// // Cl(OE)⊗ Zl

// 0,

where Div(OE) is the non-archimedean part of the group DivS∞(E) of Arakelov
divisors of E, div is the divisor map extended by Zl–linearity to (E× ⊗Zl) and the
projection onto Cl(OE)⊗Zl is the usual divisor–class map (taking d ∈ Div(OE) to

its class d̂ ∈ Cl(OE)) extended by Zl–linearity. Since n is odd, we have an equality
eω−n · (O×

E ⊗ Zl) = eω−n · (µl ⊗ Zl). Consequently, by taking ω−n–components in
the exact sequence above we obtain the following exact sequence of Zl–modules
(79)

0 // eω−n(E×/µl ⊗ Zl)
div // eω−n(Div(OE)⊗ Zl) // // A[l−1−n] // 0.

Now, according to (78), A[l−1−n] is cyclic if and only if it contains an ideal class
of order |ω−n(Θ0(b, fE))|−1

l . Consequently, exact sequence (79) and Lemma 5.1

applied to E/Q and a sufficiently large m, imply that A[l−1−n] is cyclic if and only
if there exists an OE–prime w satisfying the additional hypotheses in (2), such that

(80) ω−n(Θ0(b, fE)) · eω−n(w⊗ 1) ∈ div(eω−n(E× ⊗Zl)) \ l · div(eω−n(E× ⊗Zl)).
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In the argument above, it is important to note that since w sits over a rational
prime p which splits completely in E/Q, we have eω−n(w⊗ 1) ̸∈ l · (Div(OE)⊗Zl).
However, by the definition of λb,fE (w), we have

(81) div(eω−n(λb,fE (w)⊗ 1)) = ω−n(Θ0(b, fE)) · eω−n(w ⊗ 1).

Equality (81) combined with exact sequence (79) shows that (80) is equivalent to

eω−n(λb,fE (w)⊗ 1) ̸∈ eω−n(µl · E×l ⊗ Zl).

This is clearly equivalent to eω−n(λb,fE (w)) ̸∈ (µl · E×l)/E×l. �

Remark 6.5. Note that for n ̸≡ −1 mod (l − 1), we have an equivalence

eω−n(λb,fE (w)) ̸∈ (µl · E×l)/E×l ⇐⇒ eω−n(λb,fE (w)) ̸= 0,

since we have an obvious inclusion (µl · E×l)/E×l ⊆ eω1 · (E×/E×l).

7. An Euler system in the higher odd K–theory with coefficients

In this section we construct an Euler System for the odd K-theory (with coeffi-
cients) of a CM abelian extension of a totally real number field. Our construction
generalizes those of [33] and [4] to arbitrary totally real number fields and it is quite
different from that in [6].

As above, we fix a finite abelian CM extension F/K of a totally real number
field of conductor f , a rational prime l > 2 and a natural number n ≥ 1. Next, we
fix an OK–ideal b which is coprime to f l. We let L = l1 · · · · · lt run through all
the products of mutually distinct prime ideals l1, . . . , lt of OK , coprime to l · bf .
Let FL := FKL, where KL is the ray class field of K of conductor L. Obviously,
the conductor of the CM-extension FL/K divides Lf . We let FLlk := FL(µlk), for
every k ≥ 0.

For each CM extension FLlk/K we fix an OK–ideal ideal f ′Llk such that

Supp(f ′Llk) = Supp(f) ∪ Supp(L) ∪ Supp(lOK).

Also, we fix roots of unity ξlk ∈ F (µlk) of order l
k, such that

ξllk+1 = ξlk ,

for all k ≥ 0. We let
βL,k := βF

Llk
(ξlk)

be the corresponding Bott elements in K2(FLlk ,Z/lk), for all L and k as above.
Next, we fix a prime v in OF , such that v - lb. For each L as above and each k ≥ 0,
we fix a prime wk(L) of OF

Llk
sitting above v, such that wk′(L′) sits above wk(L)

whenever lkL | lk′
L′. We let v(L) := w0(L), for all L as above.

Let f∗Llk denote the conductor of FLlk/K multiplied by all the l–adic primes in
K. We will use the l–adic imprimitive Brumer–Stark elements {λb,f∗

Llk
(wk(L))}L

viewed as special elements in {K1(FLlk)l}L to construct special elements {λv(L),k}L
in the K–theory with coefficients {K2n+1(FL,Z/lk)}L, for all k > 0 as follows.

Definition 7.1. For all L and k as above and n ≥ 0 define λv(L),k ∈ K2n+1(FL, Z/lk)
as follows.

λv(L),k := TrF
Llk

/FL
(λb,f∗

Llk
(wk(L)) ∗ β∗n

L,k)
γl ,

where the operator γl ∈ Zl[G(FL/K)] is given by (17).
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The reader should note that in the definition above, for simplicity, our notation
does not capture the dependence of γl on L.

In what follows, we will apply the following three natural maps in K-theory: the
transfer map (82), the reduction modulo wk(L) map (83), the boundary map in the
Quillen localization sequence for K–theory with coefficients (84) and the reduction
modulo lk map (85):

Trwk(L)/w0(L) : K2n(kwk(L), Z/lk) → K2n(kw0(L), Z/lk)(82)

πwk(L) : K2n(OF
Llk

,S , Z/lk) → K2n(kwk(L), Z/lk)(83)

∂FL
: K2n+1(FL, Z/lk) −→

⊕
v

K2n(kv, Z/lk)(84)

rk′/k : K2n+1(FL, Z/lk
′
) → K2n+1(FL, Z/lk), for all k′ ≥ k.(85)

The following theorem captures the main properties of the special elements defined
above. In particular, part (3) of the theorem below simply states the fact that these
special elements form an Euler system in {K2n+1(FL,Z/lk)}L, for all k > 0.

Theorem 7.2. Assume that L′ = Ll′, for an OK–prime l′ - L. Let us denote
NL := Trkwk(L)/kw0(L)

.

(1) If k′ ≥ k and wk(L) splits completely in FLlk′ , then:

rk′/k(λv(L),k′) = λv(L),k.

(2) ∂FL
(λv(L),k) = NL(πwk(L)(β

∗n
L,k))

lvl(n)Θn(b,Lf).

(3) If σl′ denotes the Frobenius morphism associated to l′ in G(FL/K), then

TrFL′/FL
(λv(L′),k) = (λv(L),k)

1−N(l′)n·σ−1

l′ .

Proof. Part (1) follows by Lemma 3.11 and the projection formula. The proof part
(2) is similar to the proof of Theorem 4.5(2). Let us prove the third formula above
(the Euler system property). We apply Definition 7.1 and Lemma 3.11 combined
with Remark 3.21 to conclude that we have the following equalities:

TrFL′/FL
(λv(L′),k) = TrFL′/FL

TrF
L′lk/FL′ (λb,f∗

L′lk
(wk(L

′)) ∗ β∗n
L′,k)

γl =

TrF
Llk

/FL
TrF

L′lk/FLlk
(λb,f∗

L′lk
(wk(L

′)) ∗ β∗n
L′,k)

γl =

TrF
Llk

/FL
(NF

L′lk/FLlk
λb,f∗

L′lk
(wk(L

′)) ∗ β∗n
L,k)

γl =

TrF
Llk

/FL
(λb,f∗

Llk
(wk(L))

1−σl′
−1 ∗ β∗n

L,k)
γl =

(TrF
Llk

/FL
(λb,f∗

Llk
(wk(L)) ∗ β∗n

L,k)
γl)1−N(l′)n·σl′

−1

=

(λv(L),k)
1−N(l′)n·σ−1

l′ .

�

Remark 7.3. Note that if K = Q, then our Euler system construction recaptures

that of [4]. Also, if n = 0, our Euler system lives in {F×
L /F×lk

L }L and it is given by

λv(L),k := TrF
Llk

/FL
(λb,f∗

Llk
(wk(L)))

γl mod F×lk

L .

This is a vast generalization of Kolyvagin’s Euler system of Gauss sums (mod lk)
(see [33]) which can be obtained from our construction by setting K = Q.
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8. Appendix: The class groups and étale cohomology groups of rings
of S-integers

All the cohomology groups in what follows are étale cohomology groups. The
following two lemmas are very useful in section 6.

Lemma 8.1. Let l be an odd prime. Let L be a number field such that there is only
one prime vl over l in OL. Let S := Sl = {vl}. Then for any m ∈ N we have the
following natural isomorphisms:

(86) Cl(OL,S)/l
m ∼=−→ H2(OL,S , Z/lm(1))

(87) Cl(OL,S)l
∼=−→ H2(OL,S , Zl(1))

(88) Cl(OL,S)[l
m]

∼=−→ H2(OL,S , Zl(1))[l
m]

Proof. It is well known (see [23, §2] and the references therein) that we have the
following canonical isomorphisms

H0(OL,S ,Gm) ≃ O×
L,S(89)

H1(OL,S ,Gm) ≃ Cl(OL,S)(90)

H2(OL,S ,Gm) ≃ Br(OL,S) ≃ (Q/Z)|S|−1(91)

where Gm is the étale sheaf associated to the multiplicative group scheme Gm and
Br stands for Brauer group. Since in our case |S| = 1, we have H2(OL,S ,Gm) = 0.
Therefore, the long exact sequence in étale cohomology associated to the short
exact sequence of étale sheaves on Spec(OL,S)

(92) 1 → µlm → Gm
lm→ Gm → 1

combined with (90) gives the isomorphism

Cl(OL,S)/l
m ≃ H2(OL,S , µlm) = H2(OL,S , Z/lm(1)),

which is precisely (86). Isomorphism (87) follows upon taking an inverse limit with
respect to m. Isomorphism (88) follows upon applying the multiplication by lm

map to both sides of (87). �

Lemma 8.2. Let E := Q(µlk), for some k ≥ 0. Let vl be the unique prime of
OE over l and let S := {vl}. Assume that n is odd. Then, there are natural
isomorphisms of Z/lk[G(E/Q)] modules:

(93) (H1(OE,S , Zl(n+ 1))/lk)+ ∼= Z/lk(n+ 1)

(94) Cl(OE,S) [l
k]− ⊗ Z/lk(n) ∼= H2(OE,S ,Zl(n+ 1))+ [lk]

Above, the upper scripts ± stand for the corresponding eigenspaces with respect to
the action of the unique complex conjugation automorphism of E.

Proof. Since n+ 1 ≥ 2 and (n+ 1) is even, if we combine [23, Prop. 2.9] with [23,
p. 239] we obtain the following natural isomorphisms of Zl[G(E/Q)]–modules

H1(OE,S , Zl(n+ 1))+ ≃ H1(OE+,S , Zl(n+ 1)) ≃ [Ql/Zl(n+ 1)]GE+ ,
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where E+ is the maximal real subfield of E and GE+ is its absolute Galois group.
Since 2 = [E+(µlk) : E

+] divides n+ 1, we have [Ql/Zl(n+ 1)]GE+ ≃ Z/lα(n+ 1),
for some α ≥ k. Consequently, we have

(H1(OE,S , Zl(n+ 1))/lk)+ ≃ H1(OE,S , Zl(n+ 1))+/lk ≃ Z/lk(n+ 1),

which proves isomorphism (93).

Now, let E∞ := E(µl∞) and Γ := G(E∞/E). Obviously, Γ ≃ G(E+
∞/E+). Since

the l–adic primes in E,E+, E∞, E+
∞ are principal, we have Cl(OE,S) = Cl(OE) and

also Cl(OE∞,S) = Cl(OE∞). Similar equalities hold for E+ and E+
∞. Moreover,

since l ̸= 2, the natural map at the level of ideal classes induces an injection

Cl(OE)
−
l ⊆ Cl(OE∞)−l .

(See [40, Prop. 13.26].) It is also well known (as a direct consequence of the
cohomological triviality of Cl(OE(µlm ))

−
l as a G(E(µlm)/E)–module, for all m, see

[18]) that the inclusion above induces an equality

(95) Cl(OE)
−
l = [Cl(OE∞)−l ]

Γ.

Now, if X+
∞ denotes the Galois group of the maximal pro-l abelian extension of

E+
∞ which is unramified outside of l, [23, Prop. 2.20] and [23, p. 238] give natural

isomorphisms of Zl[G(E/Q)]–modules

H2(OE,S ,Zl(n+ 1))+ ≃ H2(OE+,S ,Zl(n+ 1)) ≃ (X+
∞(−(n+ 1))Γ)

∨,

where ∗Γ stands for Γ–coinvariants and ∗∨ stands for Pontrjagin dual. However,
we have a natural perfect duality pairing (see [40, Prop. 13.32])

X+
∞ × Cl(OE∞)−l → Ql/Zl(1).

When combined with the last displayed isomorphisms this pairing leads to

H2(OE,S ,Zl(n+ 1))+ ≃ [Cl(OE∞)−l (n)]
Γ.

When combined with (95) this isomorphism leads to

H2(OE,S ,Zl(n+ 1))+[lk] ≃ [Cl(OE∞)l[l
k]−(n)]Γ

≃ [Cl(OE∞)l[l
k]− ⊗ Z/lk(n)]Γ

= Cl(OE)l[l
k]− ⊗ Z/lk(n).

The last equality above is a consequence of the fact that Γ acts trivially on Z/lk(n)
(as µlk ⊆ E×.) This concludes the proof of isomorphism (94). �
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Poznań 61614, Poland

E-mail address: banaszak@amu.edu.pl

Department of Mathematics, University of California, San Diego, La Jolla, CA
92093, USA

E-mail address: cpopescu@math.ucsd.edu


