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CHAPTER I

Introduction

1.1 Overview

The interaction between the fields of algebraic geometry and commutative ring

theory has long been fruitful for both subjects. The very foundations of modern

algebraic geometry as developed in Hartshorne’s classic text [18], for example, rest

heavily on commutative algebra. In the opposite direction, geometric techniques

have often been indispensable to the proofs of algebraic theorems. The basic idea

of noncommutative algebraic geometry is to try to generalize aspects of the corre-

spondence between geometry and commutative rings to the noncommutative realm.

This general notion is not particularly new, but only comparatively recently there

has been great success in mimicking some of the more global methods of projective

algebraic geometry to produce a geometric theory for noncommutative graded rings

in particular.

This new subject is known as noncommutative projective geometry, and while

of theoretical interest in its own right, it has also provided the solutions to many

purely ring-theoretic questions. For example, the graded domains of dimension two,

which correspond to noncommutative curves, have now been completely classified

[3]. The noncommutative analogs of the projective plane P2 have been identified
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and classified as well. The generic noncommutative projective plane is called the

Sklyanin algebra; despite its simple presentation by generators and relations, before

the geometric approach of [5],[6] was developed it was not even known that this

algebra was noetherian.

The classification theory of graded algebras of dimension three, or noncommuta-

tive projective surfaces, has also progressed substantially in recent years; see [29]. In

this paper, we study a class of algebras of dimension at least three and show that

they provide counterexamples to a number of open questions in the literature. In

particular, these give new examples of noncommutative surfaces with much different

behavior than any of those studied previously. Moreover, the rings R that are the

subject of our study have a simple and general construction: they are “generic” sub-

algebras of some very nice rings—twisted homogeneous coordinate rings of projective

space—which have similar properties to commutative polynomial rings.

We shall prove that any such ring R is noetherian, but that the noetherian prop-

erty fails when one changes the base field to some larger commutative ring, answering

a question in [2]. These rings also have unusual properties with respect to homolog-

ical algebra. Even though R is a maximal order in its ring of fractions, it satisfies

some but not all of the χ conditions, a set of homological conditions on a ring which

are hypotheses for a number of important theorems in noncommutative geometry.

The existence of a ring with such behavior answers questions in [30] and [29]. Despite

being a counterexample to all of these open questions, R is not overly pathological

and appears to have interesting geometric properties.

In the remainder of this introduction, we will give a more detailed and leisurely

exposition of the subject of noncommutative geometry and state precisely our main

results. We will try to keep technical definitions to a minimum, deferring them as
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much as possible to §2.1.

1.2 Noncommutative projective schemes

All rings in this introduction will be N-graded algebras A =
⊕∞

i=0Ai over an

algebraically closed field k. We assume always that A is connected, that is that A0 =

k, and finitely generated as a k-algebra. Let A -gr be the category of all noetherian

Z-graded left A-modules, with morphisms the homomorphisms preserving degree.

Also, let A -qgr be the quotient category of A -gr by the full subcategory of modules

with finite k-dimension (see §2.1 below for more details about quotient categories).

For M,N ∈ A -gr, Exti(M,N) will be notation for the Ext group calculated in the

ungraded category.

We briefly review some commutative algebraic geometry. The necessary back-

ground on scheme theory may be found in [18, Chapter II]. Let X be a projective

scheme over a field k, with category of coherent sheaves cohX. Let L be an in-

vertible sheaf on X. From this data one may construct a graded “coordinate ring”

B = B(X,L) =
⊕∞

n=0 H0(X,L⊗n), where H0 is the global sections functor. The

multiplication is defined in the obvious way using the natural map

H0(L⊗m) ⊗k H0(L⊗n) −→ H0(L⊗m ⊗ L⊗n) = H0(L⊗m+n)

for all m,n ≥ 0.

Recall that an invertible sheaf L ∈ cohX is called ample if, given any F ∈ cohX,

the sheaf F ⊗L⊗n is generated by its global sections for n� 0. The following result

due to Serre is fundamental.

Theorem 1.2.1. (Serre’s Theorem) Let X be a projective scheme over k with L an

ample invertible sheaf, and let B = B(X,L). Then

(1) There is an equivalence of categories cohX ∼ B -qgr.
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(2) If X = projA for some connected N-graded algebra A which is finitely generated

in degree 1, and L = O(1) is the twisting sheaf on X, then A and B are isomorphic

up to a finite dimensional vector space. In particular, coh(projA) ∼ A -qgr. �

There is a remarkable noncommutative generalization of the entire framework we

have just summarized, the theory of twisted homogeneous coordinate rings. Suppose

that ϕ is an automorphism of the projective scheme X. For a sheaf F ∈ cohX, we

use the notation Fϕ for the pullback ϕ∗F . For any invertible sheaf L, we define

(1.2.2) Ln = L ⊗ Lϕ ⊗ Lϕ2 ⊗ · · · ⊗ Lϕn−1

.

Then the twisted homogeneous coordinate ring B = B(X,L, ϕ) is given by B =

⊕∞
n=0 H0(X,Ln). To define the multiplication on B, note that Lm ⊗ Lϕm

n
∼= Ln+m,

and that there is a natural map (in fact isomorphism) H0(Ln) → H0(Lϕm

n ), so that

altogether there is a multiplication map

Bm ⊗Bn = H0(Lm) ⊗k H0(Ln) → H0(Lm) ⊗k H0(Lϕm

n ) → H0(Lm+n) = Bm+n

for every m,n ≥ 0.

Of course, the twisted homogeneous coordinate ring B(X,L, ϕ) is noncommuta-

tive in general. Let us give a simple example, which is known as the Jordan quantum

plane. See also Proposition 2.3.4 below for a more general calculation of the multi-

plication in twisted homogeneous coordinate rings of projective space.

Example 1.2.3. [29, Example 3.4] Let X = P1, and define the automorphism ϕ

of X by ϕ(a0 : a1) = (a0 : a0 + a1). The twisted homogeneous coordinate ring

B = B(X,O(1), ϕ) has the explicit presentation B = k{x, y}/(xy − yx− x2).

Given the data for a twisted homogeneous coordinate ring (X,L, ϕ), we say that

L is ϕ-ample if, given any F ∈ cohX, F ⊗ Ln is generated by its global sections
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for n � 0, where Ln is as in (1.2.2). Serre’s Theorem then generalizes to twisted

homogeneous coordinate rings in the following way.

Theorem 1.2.4. [7], [20] Let X be a projective scheme with automorphism ϕ and

ϕ-ample invertible sheaf L. Then B = B(X,L, ϕ) is a noetherian ring, and B -qgr ∼

cohX. �

The theory of twisted homogeneous coordinate rings produces a large class of

noncommutative graded rings which are built from geometric data, and techniques

from algebraic geometry may be used to study such rings.

Now given an arbitrary noncommutative N-graded k-algebra A, one would like

to associate some geometric object to A, but there are a number of problems with

attempting to generalize the construction of “proj” näıvely to this setting. For one,

noncommutative graded rings may have few graded prime ideals, so that the space

of graded prime ideals with the Zariski topology is too small to be interesting. In

addition, localization is only sometimes available for noncommutative rings, and thus

it is unclear how one would define the structure sheaf.

Serre’s Theorem and its generalization to twisted homogeneous coordinate rings

(Theorem 1.2.4) suggest a different approach. If A is a noncommutative graded ring,

the quotient category A -qgr makes perfect sense and this gives a natural way to

define a noncommutative analog of coherent sheaves. This category is the intrinsic

geometric object we associate to the ring A.

Definition 1.2.5. [8] Let A be any N-graded k-algebra. The noncommutative pro-

jective scheme A -proj is defined to be the ordered pair (A -qgr,A), where A, the

distinguished object, is the image of AA in A -qgr.

As we shall see in §1.5, there is a natural generalization of Serre’s theorem for
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these noncommutative projective schemes as well, so that one achieves the same kind

of useful interplay between rings and geometry as in the commutative case.

1.3 Curves and surfaces

In commutative algebraic geometry, curves and surfaces are the best-understood

varieties. Much attention in noncommutative geometry has been similarly focused

on graded rings of small dimension. The dimension function for rings which is most

convenient here is the GK-dimension, which we will define in general in §2.1. For the

purposes of this introduction, we just assume that all graded algebras A of interest

have a Hilbert polynomial, that is some g ∈ Q[x] such that dimk An = g(n) for all

n � 0; in this case GK(A) = deg g + 1. We define a noncommutative curve to be

a category of the form A -qgr for some noetherian graded ring A of GK-dimension

2, and a noncommutative surface to be A -qgr for a noetherian graded ring A of

dimension 3.

We begin by discussing the case of domains of dimension 2. Twisted homogeneous

coordinate rings of projective curves turn out to be ubiquitous in this setting; a

striking example of this is the following theorem of Artin and Stafford.

Theorem 1.3.1. [3] Let A be an N-graded domain with GK(A) = 2, which is finitely

generated by elements of degree one. Then there is a projective curve Y , an auto-

morphism σ of Y , and a σ-ample invertible sheaf L on Y , such that A is isomorphic

in large degree to the twisted homogeneous coordinate ring B(Y,L, σ). The ring A is

noetherian and A -qgr ∼ cohY . �

The case of domains of dimension 2 which are not generated in degree 1 is some-

what more subtle, but such rings may also be described in terms of geometric data—

see [3] for the full details. These results, together with their extension to the case of
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semiprime rings [4], essentially settle the classification of noncommutative curves.

The theory of noncommutative surfaces, on the other hand, is more complicated.

It is certainly not true, for example, that a graded domain of GK-dimension 3 which

is generated in degree 1 is a twisted homogeneous coordinate ring of a commutative

surface. An obvious first step in grappling with noncommutative surfaces is to iden-

tify the correct noncommutative analogs of P2, and there is good evidence that this

problem has been solved—they are the Artin-Schelter regular algebras of dimension

3 and weight (1, 1, 1).

Definition 1.3.2. Let A be a connected, finitely generated N-graded algebra, and

let k = A/A≥1. We say that A is Artin-Schelter regular (or AS-regular) if A has finite

global dimension d, finite GK-dimension, and A satisfies the Gorenstein condition:

ExtiA(Ak, A) = 0 if i 6= d, and ExtdA(Ak, A) ∼= kA (up to some shift of grading).

The preceding definition was formulated in an attempt to capture the essential

homological properties of commutative polynomial rings. The AS-regular rings of

dimension 3 have now been completely classified by results of Artin, Tate, Van den

Bergh, and Stephenson [5], [6], [32], [33]. These rings are all noetherian domains,

and they all have the Hilbert series of a weighted polynomial ring in three variables.

It is thus natural to consider the AS-regular rings of dimension 3 with weight (1, 1, 1)

as the noncommutative coordinate rings of P2. In support of this notion, Bondal and

Polishchuk [11] have developed a reasonable category-theoretic notion of a noncom-

mutative P2, and the categories so identified are exactly the A -qgr for the AS-regular

rings A of dimension 3 and weight (1, 1, 1). See [29, §11] for more details.

One of the crucial techniques underlying the proof of the classification theorem

for AS-regular rings is the study of point modules. For any connected N-graded ring

A which is finitely generated in degree 1, we say that M ∈ A -gr is a point module if
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it is cyclic, generated in degree 0, and dimkMn = 1 for n ≥ 0. If A is commutative,

then its point modules naturally correspond to the (closed) points of the scheme

projA. If A is an AS-regular algebra of dimension 3, one can prove that the set of

point modules for A is also parameterized by a commutative projective scheme X.

For example, consider the Sklyanin algebras, which have explicit presentation

S = Skl3(a, b, c) = k{x, y, z}/(axy + byx+ cz2, ayz + bzy + cx2, azx + bxz + cy2)

for generic (a : b : c) ∈ P2. For such an algebra S, the set of point modules is

parameterized by an elliptic curve E. There is a natural way to construct a surjective

homomorphism from S to a twisted homogeneous coordinate ring B = B(E,L, ϕ).

The properties of the twisted homogeneous coordinate ring B follow by studying the

geometry of the elliptic curve E, and then information may be pulled back to the

ring S. This geometric method was the first way that many of the Sklyanin algebras’

most basic properties, such as the noetherian property and the Hilbert function, were

proven (a more recent method, also geometric, is given in [34].)

The classification of noncommutative surfaces in general is still a very active area

of current research. In the commutative case, it is known that every projective

surface is birational to a minimal nonsingular surface, and there is Zariski’s theorem

that any two birational surfaces may be transformed into each other by repeatedly

blowing up or blowing down. Part of this framework has been introduced with some

success to the noncommutative case. For example, Van den Bergh has developed

a theory of noncommutative blowing up and down [37]. For a graded domain A

of finite GK-dimension, one may localize all of the nonzero homogeneous elements

to obtain the graded quotient ring D of A, and then the zeroeth graded piece D0

is a division ring which is an analog of the function field in the commutative case.

Thus it is natural to define two noncommutative schemes A -proj and B -proj to be
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birationally equivalent if the associated division rings of A and B are isomorphic.

There is as yet no noncommutative analog of Zariski’s theorem, however.

In this thesis, we shall study a class of graded algebras which provide new examples

of noncommutative surfaces (and higher dimensional noncommutative varieties) with

very different properties from the known examples. The existence of these algebras

answers several open foundational questions in the literature, as we shall describe in

the next sections. Moreover, these rings demonstrate just how different the surface

case can be from curves, and add a new wrinkle to the classification project for

surfaces.

1.4 Extension of base rings

In our discussion of the AS-regular algebras of dimension 3 above, we noted that

for such rings the point modules are parameterized by a commutative variety, and

that studying the geometry of this variety gives information about the ring itself.

This is a very useful technique in general, and so it is natural to wonder for which

rings the point modules form a nice geometric object. Artin and Zhang have proven

a very general result in this vein. We note the following definition.

Definition 1.4.1. A k-algebra A is called strongly (left) noetherian if A ⊗k B is a

left noetherian ring for all commutative noetherian k-algebras B.

The following is the special case of Artin and Zhang’s theorem of greatest interest

to us:

Theorem 1.4.2. [9, Corollary E4.11, Corollary E4.12]. Let A be a connected N-

graded strongly noetherian algebra over an algebraically closed field k.

(1) The point modules over A are naturally parameterized by a commutative projective

scheme over k.
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(2) There is some d ≥ 0 such that every point module M for A is uniquely determined

by its truncation M/M≥d. �

The natural notion of parameterization intended here is defined formally in §3.4.

The strong noetherian property holds for many standard examples of noncommu-

tative rings, including all finitely generated commutative k-algebras, all twisted ho-

mogeneous coordinate rings of projective k-schemes, and the AS-regular algebras of

dimension 3 [2, Section 4]. On the other hand, somewhat earlier then the work of

Artin and Zhang on Theorem 1.4.2, Resco and Small [26] had given an example of

a noetherian finitely generated algebra over a field which is not strongly noetherian.

This algebra is not graded, however, nor is the base field algebraically closed, and

so the example falls outside the paradigm of noncommutative projective geometry.

This prompts the following question.

Question 1.4.3. [2, page 580] Is every finitely generated N-graded noetherian k-

algebra strongly noetherian?

We will produce a whole class of algebras R, obtained by the following construc-

tion, which will answer this question in the negative.

Definition 1.4.4. Let t ≥ 2, and let S be a twisted homogeneous coordinate ring

B(Pt,O(1), ϕ) for a generic choice of ϕ. Then let R be a subalgebra of S generated

by a generic codimension one subspace of S1.

Let us give an explicit example for t = 2. Let ϕ be the automorphism of P2 given

by ϕ(a : b : c) = (pa : qb : c) for p, q ∈ k which are algebraically independent over

the prime subfield of k. Then S = B(P2,O(1), ϕ) has the following presentation:

S = k{x, y, z}/(pxz − zx, qyz − zy, pq−1xy − yx).
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Now let R be the subalgebra of S generated by any two independent elements r1, r2 ∈

S1 such that kr1 +kr2 does not contain x, y, or z. A large number of other examples

are given in Chapter V.

Our precise result will be the following.

Theorem 1.4.5. (Theorem 3.4.9) The ring R of Definition 1.4.4 is a connected N-

graded k-algebra, finitely generated in degree 1, which is noetherian but not strongly

noetherian. �

Some of the most basic properties of the rings R of Definition 1.4.4 are quite

non-trivial to prove. Indeed, in [19] Jordan studied the special case of these algebras

where t = 2, but did not settle the noetherian property. We will need to expend a

good deal of effort to prove the noetherian property for R.

We will offer two different proofs, in fact, that R is not strongly noetherian. First,

we will classify the set of point modules for R, from which we can see that R fails

to satisfy part (2) of Theorem 1.4.2. For the second proof we construct an explicit

commutative noetherian ring B such that R⊗B is not noetherian. The ring B that

works is an infinite affine blowup of affine space, which was defined in [2] and is an

interesting construction in itself.

1.5 The χ conditions and cohomological dimension

As we mentioned earlier, one of the driving problems in noncommutative geom-

etry is the classification of noncommutative surfaces. In order to make this project

feasible, it has become clear that one needs some restrictions on which rings or cat-

egories should be considered. For example, in [1] Artin studies noncommutative

surfaces of the form A -proj for graded rings A of dimension 3, assuming some basic

“niceness” properties on the rings, and makes the provocative conjecture that every
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such surface is birationally equivalent to A′ -proj for A′ from a short list of known

rings. Naturally, Artin assumes that A is noetherian, finitely generated in degree

1, and that GK-dimension behaves well for A; the more important assumption is

that A has a balanced dualizing complex, which provides information similar to Serre

duality in the commutative case. By results of Van den Bergh, Yekutieli, and Zhang

[36, Theorem 6.3] [42, Theorem 4.2], the existence of of a balanced dualizing complex

for a graded ring A is equivalent to the hypothesis that A and its opposite ring Aop

satisfy the χ conditions and have finite cohomological dimension. Let us define these

notions.

Definition 1.5.1. Let A be a connected N-graded k-algebra. For i ≥ 1, we say that

A satisfies χi (on the left) if dimk Extj(A/A≥1,M) < ∞ for all M ∈ A -gr and all

j ≤ i. If A satisfies χi for all i > 0, then we say that A satisfies χ.

We define cohomology groups for a noncommutative scheme A -proj = (A -qgr,A)

by setting Hi(M) = ExtiA -qgr(A,M).

Definition 1.5.2. Let A be a connected N-graded k-algebra. The cohomological

dimension of A -proj (or A) is defined to be

cd(A -proj) = min{i ≥ 0 | Hi(M) = 0 for all M ∈ A -qgr}.

It is trivial that if A is commutative then it satisfies χ, and it is well known that

commutative projective schemes have finite cohomological dimension. Understand-

ing which noncommutative rings satisfy these conditions, and thus how stringent

assumptions such as Artin’s are in the noncommutative case, is a very important

problem.

The χ conditions actually appear in a number of fundamental results in the theory

of noncommutative projective schemes. First and foremost there is the following
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noncommutative analog of Serre’s theorem (Theorem 1.2.1) due to Artin and Zhang.

Theorem 1.5.3. [8, Theorem 4.5]. Let A be a noetherian N-graded algebra, and

let A -proj = (A -qgr,A). Then B =
⊕

i≥0 H0(A[i]) is a graded ring and there is a

canonical homomorphism ψ : A→ B. If A satisfies χ1 then ψ is an isomorphism in

large degree, and A -qgr ∼= B -qgr. �

In other words, if A satisfies χ1 then A can be more or less reconstructed from

A -proj as a “coordinate ring”.

There is also the following noncommutative version of Serre’s finiteness theorem.

Theorem 1.5.4. [8, Theorem 7.4] Let A be a left noetherian finitely N-graded alge-

bra. If A satisfies χ, then the following conditions hold:

(1) dimk Hj(N ) <∞ for all j ≥ 0 and all N ∈ A -qgr.

(2) For any N ∈ A -qgr and j ≥ 0, one has Hj(N [n]) = 0 for n� 0. �

The χ condition is not always satisfied by noncommutative graded rings. The basic

counterexamples were given by Stafford and Zhang in [30]. Let S = k{x, y}/(xy −

yx − x2) be the twisted homogeneous coordinate ring of P1 given in Example 1.2.3

above, and let T = k + Sy ⊆ S. If char k = 0, then T is a noetherian ring. However

T fails to satisfy χi on the left (and on the right) for all i ≥ 1.

The noncommutative Serre’s theorem (Theorem 1.5.3) fails for the ring T ; writing

T -proj = (T -qgr, T ), the coordinate ring
⊕

i≥0 H0(T [i]) is isomorphic to S, which

is not equal to T in large degree. It is nonetheless still true that T -proj is very

nice; in fact coh P1 ∼ S -qgr ∼ T -qgr. By taking the polynomial extension ring T [z],

however, one obtains a ring for which T [z] -proj is also badly behaved [30].

Because the nice relationship between A and A -proj guaranteed by Theorem 1.5.3

is so fundamental, it is natural to restrict one’s attention to rings which satisfy
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χ1. The full χ condition is needed, though, for other important theorems such as

the existence of dualizing complexes. Stafford and Zhang have asked the following

natural question.

Question 1.5.5. [30, Section 4] Does there exist a noetherian ring which satisfies

χ1 but not χ?

We will give such an example below.

Theorem 1.5.6. (Theorem 4.4.3) The ring R of Definition 1.4.4 is a noetherian

connected finitely N-graded k-algebra, finitely generated in degree 1, for which χ1

holds but χi fails for all i ≥ 2. �

Thus R satisfies the noncommutative Serre’s theorem (Theorem 1.5.3). The non-

commutative Serre’s finiteness theorem (Theorem 1.5.4) fails for R, however; in fact,

dimk H1(R) = ∞, where R is the distinguished object of R -proj. One consequence

we will draw is that the category R -qgr is something quite different from the standard

examples of noncommutative schemes.

Theorem 1.5.7. (Theorem 4.4.8) The category R -qgr is not equivalent to the cat-

egory cohX of coherent sheaves on X for any commutative projective scheme X.

More generally, R -qgr 6∼ S -qgr for every graded ring S which satisfies χ2. �

The kind of pathology introduced by idealizer rings such as the examples T and

T [z] of Stafford and Zhang is easily removed, and so is not very relevant to the

understanding of noncommutative surfaces. For example, these rings can be avoided

by requiring any ring of interest to be a maximal order, which is the analog in

noncommutative ring theory of a commutative integrally closed ring. This is a natural

assumption, akin to working with normal schemes in the commutative case. Stafford

and Van den Bergh ask this question:
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Question 1.5.8. [29, Page 194] Does the χ condition hold for all graded rings which

are maximal orders?

We show to the contrary the following result.

Theorem 1.5.9. (Theorem 4.3.4) The ring R of Definition 1.4.4 is a noetherian

N-graded maximal order for which χ fails. �

This result suggests that the ring R is less pathological than the previous examples

of rings failing χ, and one expects R -proj to be quite interesting geometrically. As

further evidence that this noncommutative scheme has reasonable properties, we will

show that the notion of cohomological dimension behaves well for R -proj.

Theorem 1.5.10. (Theorem 4.5.11) R -proj has finite cohomological dimension. In

particular, cd(R -proj) ≤ t = GK(R) − 1. �

One hope is that cohomological dimension could be used as a good measure of

dimension for noncommutative schemes in general, but it is unknown at present if it

is always a finite number. The fact that cd(R -proj) <∞, despite the odd behavior of

cohomology in R -proj in other ways, suggests that perhaps cohomological dimension

is indeed always finite.

1.6 Structure of the thesis

Let us briefly describe the organization of the thesis. In Chapter II we will collect

some basic definitions and background material for the results to follow. Chapter III

is dedicated to the study of the noetherian and strongly noetherian properties for the

rings R of Definition 1.4.4, in particular Theorem 1.4.5. Chapter IV contains more

homological considerations, including the proofs of Theorems 1.5.6—1.5.10. Finally,

in Chapter V we present some examples, and show the connection between our rings

and the special cases considered by Jordan in [19].



CHAPTER II

Background Material

In this chapter, we lay some groundwork for our main results in Chapters III and

IV. In the first two sections, we collect some basic facts and definitions about graded

rings and about the GK-dimension for modules. Next, we study the notion of a

Zhang twist, which is a general way to produce many graded rings from a given one,

all of which have equivalent module categories. We will be particularly interested

in Zhang twists of commutative polynomial rings, because they give a completely

algebraic formulation of twisted homogeneous coordinate rings of projective space,

as we show below. In the last two sections of the chapter we discuss some simple

results from commutative algebra. We define Castelnuovo-Mumford regularity for

modules over a commutative polynomial ring, and use this theory to prove some

lemmas about graded ideals of points in projective space. Because these final two

sections are technical and we shall need the results in them only sporadically, the

reader may wish to skip them and move directly to Chapter III, referring back to

these sections when necessary.

2.1 Basic definitions

We wish to fix from the outset some terminology and definitions concerning graded

rings and abelian categories. We make the convention that 0 is a natural number, so

16
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that N = Z≥0. Throughout this section, let A =
⊕∞

i=0Ai be an N-graded algebra over

an algebraically closed field k. Assume also that A is connected, that is that A0 = k,

and finitely generated as an algebra by A1. Let A -Gr be the abelian category whose

objects are the Z-graded left A-modules M =
⊕∞

i=−∞Mi, and where the morphisms

Hom(M,N) are the module homomorphisms φ satisfying φ(Mn) ⊆ Nn for all n.

We shall follow a standard convention for category names, where if A -Xyz is some

abelian category then A -xyz is the full subcategory consisting of the noetherian

objects. For example, we let A -gr be the full subcategory of the noetherian objects

of A -Gr. For M ∈ A -Gr and n ∈ Z, the shift of M by n, denoted M [n], is the

module with the same ungraded module structure as M but with the grading shifted

so that (M [n])m = Mn+m. Then for M,N ∈ A -Gr we may define

HomA(M,N) =

∞⊕

i=−∞

HomA(M,N [i]).

The group HomA(M,N) is a Z-graded vector space and we also write HomA(M,N)i

for the ith graded piece HomA(M,N [i]). Under mild hypotheses, for example if M is

finitely generated, the group HomA(M,N) may be identified with the set of ungraded

module homomorphisms from M to N . It is a standard result that the category

A -Gr has enough injectives, so we may define right derived functors ExtiA(M,−) of

HomA(M,−) for any M . The definition of Hom generalizes to

ExtiA(M,N) =
∞⊕

i=−∞

ExtiA(M,N [i]).

See [8, Section 3] for a discussion of the basic properties of Ext.

For a module M ∈ A -Gr, a tail of M is any submodule of the form M≥n =

⊕∞
i=nMi, and a truncation of M is any factor module of the form M≤n = M/M≥n+1.

A subfactor of M is any module of the form N/N ′ for graded submodules N ′ ⊆ N

of M . For the purposes of this paper, M ∈ A -Gr is called torsion if for all m ∈ M
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there exists some n ≥ 0 such that (A≥n)m = 0. Note that if M ∈ A -gr, then M is

torsion if and only if dimkM <∞. We say that M ∈ A -Gr is left bounded if Mi = 0

for i� 0, and right bounded if Mi = 0 for i� 0. M is bounded if it is both left and

right bounded. If we want to be more specific, we say that M ∈ R -Gr is bounded

in [l, r] for l ≤ r ∈ Z ∪ {−∞,∞} if Mi = 0 unless l ≤ i ≤ r. A (finite) filtration of

M ∈ A -Gr is a sequence of graded submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M ; we

call the modules Mi/Mi−1 for 0 < i ≤ n the factors of the filtration.

A point module over A is a graded module M such that M is cyclic, generated in

degree 0, and dimkMn = 1 for all n ≥ 0. Note that a tail of a point module is a shift

of some other point module. A point ideal is a left ideal I of A such that A/I is a

point module, or equivalently such that dimk In = dimk An − 1 for all n ≥ 0. Since

A is generated in degree 1, the point ideals of A are in one-to-one correspondence

with isomorphism classes of point modules over A.

Suppose that A is a domain. A (left and right) Ore set in A is a multiplicatively

closed subset Z of A which satisfies an additional condition ensuring that localization

at the set Z makes sense (see [17, Chapter 9]); in this case we write AZ−1 for the

localized ring. In case the set X of all nonzero homogeneous elements of A is an Ore

set, the localization D = AX−1 is called the graded quotient ring of A. The ring D

is a Z-graded algebra, which it is not hard to see can be written as a skew-Laurent

ring D ∼= F [z, z−1; σ] for some division ring F and automorphism σ of F (explicitly,

F [z, z−1; σ] is the Z-graded ring with basis {zi}i∈Z as a left F -space subject to the

relations zif = σi(f)zi for all f ∈ F and all i ∈ Z). If the set of all nonzero elements

Y of A forms an Ore set then the localization Q = AY −1 is a division ring called

the Goldie quotient ring of A. If A is a graded domain of finite GK-dimension (see

§2.2) then both X and Y are Ore sets and both quotient rings exist [24, C.I.1.6], [21,
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4.12].

We recall some notions from the theory of abelian categories. For more details,

see [25, Sections 4.3–4.5]. Let C and C ′ be abelian categories. We use the notation

C ∼ C ′ to mean that the categories C and C ′ are equivalent. A full subcategory D of

C is called Serre if for any short exact sequence 0 →M ′ →M →M ′′ → 0 in C, both

M ′ ∈ D and M ′′ ∈ D if and only if M ∈ D. Suppose that D is a Serre subcategory of

C. Then there is a quotient category C/D and an exact quotient functor π : C → C/D

which are defined as follows. The objects of C/D are the objects of C, and π is the

identity map on objects. For X, Y ∈ C, we define the morphisms in C/D by

HomC/D(πX, πY ) = lim
−→

HomC(X
′, Y/Y ′)

where the limit is taken over all pairs (X ′, Y ′) such that X/X ′ ∈ D and Y ′ ∈ D. If

the functor π has a right adjoint ω : C/D → C, then ω is called the section functor,

and D is called a localizing subcategory of C. The functor ω is left exact if it exists.

We shall only need the following special case of the quotient category construction.

For A a noetherian N-graded ring, let A -Tors be the full subcategory of torsion

objects in A -Gr. This is a Serre subcategory and we may define the quotient category

A -Qgr = A -Gr /A -Tors. Then, as usual, let A -qgr be the full subcategory of A -Qgr

consisting of the noetherian objects. Alternatively, A -qgr may be obtained as the

quotient category A -gr /A -tors, where A -tors = A -Tors∩A -gr. One may also form

the category A -Qgr by putting an equivalence relation on morphisms in A -Gr, where

two maps ψ1, ψ2 : M → N in A -Gr are set equivalent precisely when (ψ1 − ψ2) has

kernel and cokernel in A -Tors, and then defining the morphisms in A -Qgr to be

equivalence classes of morphisms in A -Gr. It is a fact that A -Tors is always a

localizing subcategory of A -Gr, that is to say the section functor ω always exists.

In fact, for torsionfree M ∈ A -Gr we may describe ωπ(M) explicitly as the unique
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largest essential extension M ′ of M such that M ′/M is torsion. For all M ∈ A -qgr,

ω(M) is torsionfree and πω(M) ∼= M.

2.2 GK-dimension

If B is a commutative ring and M is any B-module, then the Krull dimension ofM

is defined to be the length of a maximal chain of prime ideals in the ring (B/ annM).

Many noncommutative rings, including those of interest in this thesis, tend to have

relatively few prime ideals, and so some different definitions of dimension are more

useful in the noncommutative setting. The basic dimension function we shall use

below is the Gelfand-Kirillov dimension, or GK-dimension for short.

GK-dimension is only defined for algebras over a field, and we further restrict

our attention to finitely generated algebras. We will mention only a few of its basic

properties here; a detailed treatment may be found in [21].

Definition 2.2.1. Let A be any finitely generated k-algebra, and let V be a finite

dimensional vector subspace of A which contains a generating set for A and the

element 1. Then we define

GK(A) = inf{α ∈ R | dimk V
n ≤ nα for n� 0}.

This definition is independent of the choice of V .

Let M =
∑m

i=1Ami be a finitely generated left A-module. Put Wn =
∑m

i=1 V
nmi

for all n ≥ 0; we define

GK(M) = inf{α ∈ R | dimkWn ≤ nα for n� 0}.

Again, this is independent of the choice of generating set for M and the choice of V .

For an arbitrary left A-module N , we let

GK(N) = sup{GK(M) |M is a finitely generated submodule of N}.
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The GK-dimension of algebras and modules need not be an integer. In fact there

are examples of algebras with GK-dimension d for any real number d ≥ 2. In cases

of interest, however, GK-dimension is usually integral. For instance, if A is a finitely

generated commutative k-algebra then the GK-dimension for A-modules agrees with

the usual commutative Krull dimension. A very interesting open question is whether

GK(A) must be an integer for every N-graded noetherian domain A.

Now let A be an N-graded noetherian k-algebra. Given M ∈ A -gr, the Hilbert

function of M is the function H(n) = dimkMn for n ∈ Z. If A is a finitely generated

k-algebra and M ∈ A -gr, then GK(M) depends only on the Hilbert function of

M [21, 6.1]; explicitly, GK(M) = inf{α ∈ R | dimk(M≤n) ≤ nα for n � 0}.

In particular, if M has a Hilbert polynomial, that is dimkMn = f(n) for n � 0

and some polynomial f ∈ Q[n], then GK(M) = deg f + 1 (with the convention

deg(0) = −1). Unlike the commutative case, a finitely generated graded module

over a noncommutative graded ring may not have a Hilbert polynomial. We shall

see, however, that Hilbert polynomials do exist for all modules over the rings of

interest to us below. In practice, then, we shall measure GK-dimension from the

Hilbert polynomial and will not need to work directly from the definition.

A dimension function on modules d : {left A-modules} → R≥0 ∪ {∞} is called

exact if given any exact sequence 0 → M ′ → M → M ′′ → 0 in A -gr, d(M) =

max(d(M ′), d(M ′′)). The GK-dimension is exact for modules over a noetherian N-

graded ring [23, 4.9]. For more general rings the GK-dimension does sometimes fail to

be exact; this is an inconvenience with which we shall not have to trouble ourselves.

We mention one last definition. We say that M ∈ A -Gr is (graded) critical if

GK(M/N) < GK(M) for all nonzero graded submodules N of M .
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2.3 Zhang twists

We now introduce a fundamental algebraic construction which produces new

graded rings from a given one.

Definition 2.3.1. Let A be a N-graded k-algebra, and let φ be any graded automor-

phism of A. Then we may form a new graded ringB with the same underlying k-space

as A, but with new multiplication ∗ given by f ∗ g = φn(f)g for all f ∈ Am, g ∈ An.

The ring B is called the left Zhang twist of A by the twisting system {φi}i∈N. Simi-

larly, the multiplication ? given by f ?g = fφm(g) for all f ∈ Am, g ∈ An gives a new

graded ring C we call the right Zhang twist of A by the twisting system {φi}i∈N.

It is straightforward to check the ring axioms for Zhang twists. For more details,

see also [43], which is the basic reference for this subject.

One nice property of the Zhang twist construction is that it actually preserves the

properties of the graded module categories over the two rings. Suppose that A is an

N-graded algebra with automorphism φ, and that B is the left Zhang twist of A by

the twisting system {φi}. Given M ∈ A -Gr, we construct a module θ(M) ∈ B -Gr

which has the same underlying vector space as M but has a new module action given

by a?x = φn(a)x for a ∈ Am, x ∈Mn. This gives a functor θ : A -Gr → B -Gr which

is in fact an equivalence of categories [43, Theorem 3.1].

As an immediate consequence of the equivalence of categories, we note that

HomA(M,N) ∼= HomB(θ(M), θ(N)) (as vector spaces) holds for all M,N ∈ A -Gr.

In fact, since we can define the derived functors Exti of Hom by using injective reso-

lutions, and graded injective objects correspond under the equivalence of categories,

we have more generally that ExtiA(M,N) ∼= ExtiB(θ(M), θ(N)) for all M,N ∈ U -Gr

and all i ≥ 0.
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Given B a left Zhang twist of A, we would also like to understand the relationship

between the Ext groups over A and B. This turns out to be a bit more compli-

cated, since the shift functors in the categories A -Gr and B -Gr do not necessarily

correspond under the equivalence of categories. The answer involves the following

standard notion of twisting a module by an automorphism.

Definition 2.3.2. Let A be any ring with a ring automorphism ψ. For any left A-

module M the twist of M by ψ, denoted ψM , is a module with the same underlying

space as M but with new action ∗ given by a ∗m = ψ(a)m, for all a ∈ A, m ∈M .

Lemma 2.3.3. Let B be the left Zhang twist of A by the twisting system {φi}, and

let θ : A -Gr → B -Gr be the equivalence of categories.

(1) For any N ∈ A -Gr and n ∈ Z, we have

(θ(N))[n] ∼= θ(φnN [n]).

(2) Let M,N ∈ A -Gr. For any i ≥ 0 and n ∈ Z there are k-space isomorphisms

ExtiB(θ(M), θ(N))n ∼= ExtiA(M, φnN)n ∼= ExtiA(φ−nM,N)n.

(3) Let I, J be graded left ideals of A. Under our identification of the underlying

vector spaces of A and B, we may identify θ(I) with I and θ(J) with J . For any

i ≥ 0 and n ∈ Z there are k-space isomorphisms

ExtiB(B/I,B/J))n ∼= ExtiA(A/I, A/φ−n(J))n ∼= ExtiA(A/φn(I), A/J)n.

Proof. Part (1) follows directly from the various definitions, and is left to the reader.

Part (2) is a consequence of (1) since Exti commutes with the equivalence of cate-

gories. Finally, part (3) is just the special case of (2) with M = A/I,N = A/J , once

one calculates that φn(A/J) ∼= A/φ−n(J).
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Our motivation for introducing the Zhang twist construction is the following

proposition, which shows that twisted homogeneous coordinate rings of projective

space may be formulated entirely in the language of Zhang twists. Although this

result is well known, we include a full proof for lack of a reference that works in this

generality.

Proposition 2.3.4. (Twisted Homogeneous coordinate rings of projective space) Let

U = k[x0, x1, . . . , xt] be a polynomial ring, and let X = projU = Pt. Let φ be a graded

automorphism of U , and let ϕ be the induced automorphism of X. Let L = O(1)

be the twisting sheaf of Serre on X. Then the twisted homogeneous coordinate ring

B(X,L, ϕ) is isomorphic to the right Zhang twist of U by the twisting system {φi}i≥0.

Proof. Given any module M ∈ U -gr, we let M̃ represent the corresponding coherent

sheaf on Pt. By definition, we set O(m) = Ũ [m] for m ∈ Z. Recall our notation Fψ

for the pullback ψ∗(F). Now, by [18, Proposition 5.12], for any M ∈ U -gr we have

(M̃)ϕ
n

= (ϕn)∗(M̃) ∼= ˜(φnU) ⊗U M ∼= φ̃nM

for all n ∈ Z, where φnM is the twist of M by the automorphism φn, as in Defini-

tion 2.3.2. For each n ≥ 0 there is an isomorphism of U -modules

U [n] −→ φmU [n],

given by the formula u 7→ φm(u), which induces the standard isomorphism of sheaves

(2.3.5) O(n) −→ O(n)ϕ
m

.

In particular, setting L = O(1), it follows that Lϕi ∼= L for all i ≥ 0, and so

Ln = L⊗ Lϕ ⊗ · · · ⊗ Lϕn−1 ∼= L⊗n = O(n)



25

for all n. Now taking global sections of (2.3.5), we get a map

(2.3.6) H0(Ln) ∼= H0(O(n)) −→ H0(O(n)ϕ
m

) ∼= H0(Lϕm

n ).

By [18, Proposition 5.13], we may identify H0(O(n)) as a vector space with Un for

all n ≥ 0, and under this identification the map (2.3.6) is simply the map Un
φm

−→

Un. Now the multiplication map in the twisted homogeneous coordinate ring is by

definition

H0(Lm) ⊗k H0(Ln) → H0(Lm) ⊗k H0(Lϕm

n ) → H0(Lm+n),

which may be identified with the map

Um ⊗ Un → Um+n

f ⊗ g 7→ fφm(g).

This is exactly the multiplication in the right Zhang twist of U by the twisting system

{φi}.

The class of rings appearing in the preceding proposition will play an important

role below. From now on, we will work exclusively with the Zhang twist formula-

tion, and will not use the twisted homogeneous coordinate ring construction further;

this will allow us to make all of our considerations algebraic. It will also be more

convenient for us to work with left Zhang twists of U below, and we do so from now

on. This does not make much difference, since if S is the left Zhang twist of U by

{φi}i∈N, then S is isomorphic to the right Zhang twist by {φ−i}i∈N [43, Theorem 4.3].

Then by Example 2.3.4, S ∼= B(Pt,O(1), ϕ−1), where ϕ is the automorphism of Pt

induced by φ.
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2.4 Castenuovo-Mumford regularity

In this section and the next, we discuss the notion of Castelnuovo-Mumford reg-

ularity for modules over commutative polynomial rings. In particular, we will use

some recent results in this subject to provide quick proofs of some technical lemmas

about the products of graded ideals of points with multiplicities in projective space.

The reader may prefer to skim these two sections and skip directly to Chapter III,

referring back to the results here when they are needed. The particular results which

we will reference in later chapters are Corollary 2.4.8 and Lemmas 2.5.6—2.5.9.

Let U = k[x0, x1, . . . xt] be a polynomial ring over an algebraically closed field

k, graded as usual with deg(xi) = 1 for all i. Generally speaking, the notion of

regularity for a U -module M is a convenient way of encapsulating information about

the degrees of the generators of all of the syzygies of M .

Definition 2.4.1. [16, page 509] Let M ∈ U -gr. Take a minimal graded free

resolution of M :

0 →
r(t+1)⊕

i=1

U [−ei,t+1] → . . .→
r0⊕

i=1

U [−ei,0] →M → 0.

If ei,j ≤ m + j for all i, j then we say that M is m-regular. The regularity of M ,

regM , is the smallest integer m for which M is m-regular (if M = 0 then we set

regM = −∞).

There are other equivalent characterizations of regularity, with different advan-

tages. In the special case of ideals, we have the following criterion using sheaf coho-

mology. For M ∈ U -Gr we have the associated quasi-coherent sheaf M of Pt, and

we write M(j) for the sheaf associated to M [j].

Lemma 2.4.2. [10, Definition 3.2] Let I be an ideal of U . Let I be the corresponding

sheaf of ideals on Pt. Then I is m-regular if and only if the following conditions hold:
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(1) the natural maps Ij → H0(I(j)) are isomorphisms for all j ≥ m.

(2) Hi(I(j)) = 0 for all i, j with j + i ≥ m and i ≥ 1. �

The next trivial lemmas show that regularity behaves well with respect to exact

sequences.

Lemma 2.4.3. [16, Corollary 20.19] let 0 →M ′ →M →M ′′ → 0 be a short exact

sequence in U -gr. Then

(1) regM ′ ≤ max(regM, regM ′′ + 1)

(2) regM ≤ max(regM ′, regM ′′)

(3) regM ′′ ≤ max(regM ′ − 1, regM). �

Lemma 2.4.4. Let I, J be graded ideals of U . Then

(1) reg(I + J) ≤ max(reg(I ∩ J) − 1, reg I, reg J).

(2) reg(I ∩ J) ≤ max(reg(I + J) + 1, reg I, reg J).

Proof. From the exact sequence

0 → (I ∩ J) → (I ⊕ J) → (I + J) → 0

and the obvious fact that reg(I ⊕ J) = max(reg I, reg J), both statements are easy

consequences of Lemma 2.4.3.

Let us define some related notions. For I a graded ideal of U , we define the

saturation of I to be

Isat = {x ∈ U |(U≥n)x ⊆ I for some n}.

The ideal Isat is the unique largest extension of I inside U by a torsion module. In

addition, the saturation of I is also the largest ideal which defines the same ideal

sheaf as I on Pt. If I is the ideal sheaf on Pt corresponding to I, then we have
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(Isat)m ∼= H0(I(m)) [18, Exercise 5.10]. If Isat = I then we say that I is saturated.

The saturation degree of I is defined to be

sat I = min{m ∈ N|(Isat)≥m = I≥m}.

Finally, for a module M ∈ U -gr, let d(M) be the largest degree of an element in a

minimal generating set for M .

A module or ideal that ism-regular stabilizes in degreem in a number of important

ways.

Lemma 2.4.5.

(1) If M ∈ U -gr is m-regular, then d(M) ≤ regM.

(2) If I is a graded ideal of U then sat I ≤ reg I.

(3) If I is a graded ideal of U , then I is m-regular if and only if I≥m is m-regular.

Proof. (1) This is immediate from Definition 2.4.1.

(2) Let I be the sheaf of ideals associated to I. Then since (I sat)m ∼= H0(I(m)), the

statement follows from Lemma 2.4.2.

(3) This is also clear by Lemma 2.4.2, since I and I≥m have the same associated

sheaf of ideals I.

The regularity of an ideal I ⊆ U might be much greater than the minimal gener-

ating degree d(I), but at least there is the following bound.

Lemma 2.4.6. [10, Proposition 3.8] Let I be a homogeneous ideal of U , and let

d = d(I). Then reg I ≤ (2d(I))t!. �

We close this section with a simple application of regularity to the analysis of

bounds for Ext groups.
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Lemma 2.4.7. Let I, J be homogeneous ideals of U . There is a constant d ∈ Z,

depending only on reg I and reg J , such that reg(ExtiU(U/I, U/J)) < d for all i ≥ 0.

Proof. Note first that regU/I ≤ reg I−1 and regU/J ≤ reg J−1, by Lemma 2.4.3(3).

Take a minimal graded free resolution of U/I:

0 →
r(t+1)⊕

i=1

U [−ei,t+1] → . . .→
r0⊕

i=1

U [−ei,0] → U/I → 0.

By the definition of regularity, ei,j ≤ regU/I + (t + 1) ≤ reg I + t for all i, j ≥ 0.

Now apply Hom(−, U/J) to the complex with the U/I term deleted, producing a

complex

0 → L0
ψ0

→ L1
ψ1

→ . . .
ψt

→ Lt+1 → 0

where Lj =
⊕rj

i=1 U/J [−ei,j]. Then regLj ≤ (reg I + reg J + t− 1) for all j ≥ 0.

Now consider the map ψi : Li → Li+1 for some i ≥ 0. Certainly Li is generated in

degrees less than or equal to regLi, by Lemma 2.4.5(1). Then Imψi is also generated

in degrees less than or equal to regLi. By Lemma 2.4.6, reg(Imψi) ≤ f(regLi) where

f(x) = (2x)t!. By Lemma 2.4.3(1),

reg(kerψi) ≤ max(regLi, reg(Imψi) + 1) ≤ f(regLi) + 1.

Finally, Exti(U/I, U/J) ∼= kerψi/ Imψi−1 and so by 2.4.3(3),

reg(Exti(U/I, U/J)) ≤ max(f(regLi) + 1, f(regLi−1))

≤ f(reg I + reg J + t− 1) + 1

and thus we may take d = f(reg I + reg J + t− 1) + 1.

Corollary 2.4.8. Let I, J be any homogeneous ideals of U , and let φ be an auto-

morphism of U . Then there is some fixed d ≥ 0 such that for all n ∈ Z such that

U/(I + φn(J)) is bounded, ExtiU(U/I, U/φn(J)) is also bounded with d as a right

bound.
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Proof. If U/(I +φn(J)) is bounded, then En = ExtiU(U/I, U/φn(J)) is certainly also

bounded, since it is killed by I + φn(J). It is clear from the definition of regularity

that the ideals {φn(J)}n∈Z all have the same regularity, and so by Lemma 2.4.7 there

is some bound d ≥ 0 such that regEn ≤ d for all n ∈ Z. Then if En is bounded, d

is a right bound for it by Lemma 2.4.5(2).

2.5 Ideals of point sets

In Chapters II and III we shall need certain detailed lemmas about the ideals of

points with multiplicities, especially about the relationship between products and in-

tersections of such ideals. We will use the theory of Castelnuovo-Mumford regularity

which we introduced in the previous section as a tool to give brief proofs of the facts

we require.

As before, let U = k[x0, . . . xt] be a polynomial ring, with corresponding projective

space ProjU = Pt. Throughout this thesis, the word point will always refer to

a closed point of an (irreducible) variety. We often use the notation md for the

homogeneous ideal of polynomials in U which vanish at a point d of Pt. We shall use

the notation f ∈ md and f(d) = 0 interchangeably.

The only nontrivial ingredients that we need are the following theorems of Conca

and Herzog concerning the regularity of products.

Theorem 2.5.1. [14, Theorem 2.5]

If I is a graded ideal of U with dimU/I ≤ 1, then for any M ∈ U -gr we have

reg IM ≤ reg I + regM . �

Theorem 2.5.2. [14, Theorem 3.1]

Let I1, I2, . . . , Ie be (not necessarily distinct) nonzero ideals of U generated by linear

forms. Then reg(I1I2 . . . Ie) = e. �
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We fix some notation for the following string of lemmas. Let d1, d2, . . . , dn be

distinct points in Pt, and m1,m2, . . . ,mn the corresponding prime ideals of U . Let

0 < ei ∈ N for all i and set e =
∑n

i=1 ei. Let I = (me1
1 m

e2
2 . . .men

n ) and J =

(me1
1 ∩ m

e2
2 ∩ · · · ∩ men

n ).

Lemma 2.5.3.

(1) J is saturated.

(2) Isat = J .

Proof. (1) It is easy to see that a proper graded ideal is saturated if and only if the

irrelevant ideal U≥1 is not one of its associated primes. Each m
ei

i is already a primary

ideal with a single associated prime mi, so J =
⋂n
i=1 m

ei

i is a primary decomposition

for J , and the primes associated to J are just the mi.

(2) J/I is killed by the ideal K =
∑

i

∏
j 6=i m

ej

j . Now K is contained in no point

ideal of U , so U≥m ⊆ K for some m and thus J/I is torsion. By part (1) we must

have Isat = J .

Lemma 2.5.4.

(1) reg I = e.

(2) I≥e = J≥e.

(3) reg J ≤ e.

Proof. (1) This is an immediate consequence of Theorem 2.5.2.

(2) By Lemma 2.5.3(2), we know that Isat = J . Since I is e-regular by the first part,

sat I ≤ e by Lemma 2.4.5(2). Thus I≥e = (Isat)≥e = J≥e.

(3) This follows from Lemma 2.4.5(3) and the first two parts.

When the points {di}ni=1 do not all lie on a line, we can get better degree bounds.
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Lemma 2.5.5. Assume that the points d1, d2, . . . , dn do not all lie on a line. Then

reg J ≤ e− 1.

Proof. The hypothesis on the points forces some three of the points {di} to be non-

collinear (in particular n ≥ 3); by relabeling we may assume that d1, d2, d3 do not lie

on a line. Let K = (m1 + m2 ∩ m3). Then K1 = U1, and so clearly K = U≥1. Thus

regK = 1 (for instance by Theorem 2.5.2). By Lemma 2.4.4 and Lemma 2.5.4(3) we

have that (m1 ∩ m2 ∩ m3) is 2-regular.

Now L = (m1 ∩ m2 ∩ m3)(m
e1−1
1 ∩ m

e2−1
2 ∩ m

e3−1
3 ∩ m

e4
4 ∩ · · · ∩ men

n ) is (e − 1)-

regular, using Lemma 2.5.4 and Theorem 2.5.1. Since I = (me1
1 m

e2
2 . . .men

n ) ⊆ L,

clearly Lsat = J by Lemma 2.5.3(2). Since L is (e − 1)-regular, satL ≤ e − 1 by

Lemma 2.4.5(2) and so L≥e−1 = J≥e−1. Thus J is (e−1)-regular by Lemma 2.4.5(3).

Now we state the series of results which we shall use later in the paper. The first

is a simple Hilbert function calculation, which is presumably well-known. Because

this lemma will be so fundamental below, we include a brief proof.

Lemma 2.5.6. Let ei > 0 for all 1 ≤ i ≤ n, and let e =
∑
ei. Set J =

⋂n
i=1 m

ei

i for

some distinct point ideals m1,m2, . . . ,mn. Then dimk Jm =
(
m+t
t

)
− ∑

i

(
ei+t−1

t

)
for

all m ≥ e− 1.

In particular, if J =
⋂n
i=1 mi then dimk Jm =

(
m+t
t

)
− n for m ≥ n− 1.

Proof. Suppose that n = 1 and m1 = (x0, x1, . . . , xt−1)U . Then (me1
1 )m has as a

basis all monomials of degree m containing xt to the power at most m − e1, and

a combinatorial count gives that dimk(U/m
e1
1 )m =

(
e1+t−1

t

)
for all m ≥ e1 − 1. By

symmetry, the same result holds for an arbitrary point ideal mi. Then

dimk(U/J)m ≤
n∑

i=1

dimk(U/m
ei

i )m =
∑n

i=1

(
ei+t−1

t

)
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holds for m ≥ max(ei − 1) so certainly for m ≥ e− 1.

Assume now that m ≥ e−1. Since the base field k is infinite and m−ei+1 ≥ n−1,

it is easy to see that for each i we may choose a polynomial fi ∈ Um−ei+1 such that

fi ∈ mj for for all j 6= i but fi 6∈ mi. Then one may check that the vector space V =

∑n
i=1 Uei−1fi ⊆ Um satisfies V ∩ Jm = 0, and furthermore dimk V =

∑n
i=1

(
ei+t−1

t

)
.

We conclude that dimk(U/J)m ≥ ∑n
i=1

(
ei+t−1

t

)
. Thus dimk(U/J)m =

∑n
i=1

(
ei+t−1

t

)

and so dimk Jm =
(
m+t
t

)
− ∑

i

(
ei+t−1

t

)
as required.

The next lemma, a “Chinese remainder theorem” type result, follows easily from

the preceding lemma; we leave the proof to the reader.

Lemma 2.5.7. Let {di}ni=1 be distinct points in Pt. Fix some particular choice of

homogeneous coordinates for the points di, so that f(di) is defined for f ∈ U . Then

given scalars a1, a2, . . . , an ∈ k, there is a polynomial f ∈ Um for any m ≥ n−1 with

f(di) = ai for all 1 ≤ i ≤ n. �

We restate for easy reference below the special case of Lemma 2.5.4(2) above

where all ei = 1.

Lemma 2.5.8. Let m1, m2, . . . , mn be the ideals of U corresponding to distinct points

d1, . . . dn in Pt. Then (
∏n

i=1 mi)≥n = (
⋂n
i=1 mi)≥n. �

The last lemma is quite technical and will be required only in §3.4.

Lemma 2.5.9. Let the points d1, d2, . . . , dn, dn+1 be distinct, and assume that the

points d1, . . . , dn do not all lie on a line. Let mi ⊆ U be the homogeneous ideal

corresponding to di.

(1) (
⋂n
i=1 mi)n−1(mn+1)1 = (

⋂n+1
i=1 mi)n.

(2) (
⋂n
i=1 mi)n−1(m1)1 = (

⋂n
i=2 mi ∩ m2

1)n.

(3) (
⋂n
i=2 mi ∩ m2

1)n(mn+1)1 = (
⋂n+1
i=2 mi ∩ m2

1)n+1.
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(4) Let b1, b2 ∈ Pt, with corresponding ideals n1, n2, be such that bj 6= di for j = 1, 2

and 1 ≤ i ≤ n. Then (
⋂n
i=1 mi ∩ n1)n = (

⋂n
i=1 mi ∩ n2)n implies b1 = b2.

Proof. (1) Set K =
⋂n
i=1 mi, L = mn+1, and M =

⋂n+1
i=1 mi. By Lemmas 2.5.4 and

2.5.5, we have that regK ≤ n−1 and regL ≤ 1. Then by Theorem 2.5.1, reg(KL) ≤

n. Since clearly M = (KL)sat, by Lemma 2.4.5(2) it follows that (KL)n = Mn.

Finally, by Lemma 2.4.5(1), K is generated in degrees ≤ n − 1 and L is generated

in degree 1. Thus Kn−1L1 = (KL)n = Mn.

(2)-(3) The proofs of these parts are very similar to the proof of (1) and are

omitted.

(4) The ideals K = (
⋂n
i=1 mi ∩ n1) and L = (

⋂n
i=1 mi ∩ n2) are each n-regular by

Lemma 2.5.5, so both are generated in degrees ≤ n. Now since b1 6= di for all i, if

b1 6= b2 then the ideals K and L must differ in large degree, so they must differ in

degree n.



CHAPTER III

The Noetherian and Strong Noetherian Properties

In the present chapter, we will define the classes of rings which will be of interest to

us for the rest of the thesis. For every automorphism ϕ of Pt we define a Zhang twist

S = S(ϕ) of a commutative polynomial ring, and for each choice of a point c ∈ Pt

we define a subalgebra R = R(ϕ, c) of S. In the first two sections, we discuss some

generalities about such rings; most important, we prove a simple characterization of

the elements of R among those of S (Theorem 3.2.3). This will allow us to understand

contractions and extensions of left ideals between the rings R and S, and in §3.3 we

will use this information to show that the noetherian property for R is equivalent to

a geometric condition on the set of points {ϕi(c)}i∈Z, namely that this set should be

critically dense in Pt (see Definition 3.3.11). Later on, in Chapter V, we will show

that this condition holds for generic choices of ϕ and c.

Next, we completely classify all of the point modules for R. It will follow from

the classification that for any n ≥ 0, there is a whole Pt−1-parameterized family

of different R-point modules {P (e)}e∈Pt−1 such that all of the truncations P (e)≤n

are isomorphic. By a theorem of Artin and Zhang (Theorem 1.4.2), such behavior

implies that the strong noetherian property fails for R. In the final section, we

actually construct a commutative ring B for which R ⊗k B is not noetherian, and

35
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thus demonstrate explicitly the failure of the strong noetherian property for R. The

ring B is obtained by an interesting geometric construction—it is the coordinate ring

of an infinite affine blowup of affine space at a countable point set.

3.1 The algebras S(ϕ)

Fix a polynomial ring U = k[x0, x1, . . . , xt], where from now on we always assume

that t ≥ 2. For any graded automorphism φ of U let S be the left Zhang twist

of U by the twisting system {φi}i∈N (as defined in §2.3). The automorphism φ

of U induces an automorphism ϕ of Pt, and as we saw in Example 2.3.4 and the

following commentary, S is isomorphic to the twisted homogeneous coordinate ring

B(Pt,O(1), ϕ−1). Thus S is determined up to automorphism by the geometric data ϕ

and we write S = S(ϕ). An alternative way of seeing that ϕ determines the particular

twist S is to note that automorphisms φ1, φ2 of U give the same automorphism ϕ of

Pt if and only if φ1 = aφ2 for some a ∈ k× [18, II 7.1.1]. Then automorphisms of U

which are scalar multiples give isomorphic Zhang twists S [43, Proposition 5.13].

We identify the underlying vector spaces of S and U . Since S and its subalgebras

are our main interest, our notational convention from now on (except in the appendix)

will be to let juxtaposition indicate multiplication in S and to use the symbol ◦ for

multiplication in U . Many basic properties of the ring S = S(ϕ) are immediate

since they are obvious for U and invariant under Zhang twists. In particular, S is a

noetherian domain of GK dimension t + 1 [43, Propositions 5.1,5.2,5.7]. As in §2.3,

we also have an equivalence of the graded module categories θ : U -Gr ∼ S -Gr. For

any graded ideal I of U , θ(I) is a graded left ideal of S. We often simply identify

these left ideals and call both I.

Let md stand for the ideal in U of a point d ∈ Pt. Then mϕ(d) = φ−1(md) for
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all d ∈ Pt. Since the equivalence of categories preserves Hilbert functions and the

property of being cyclic, it is clear that the point modules over S are the modules of

the form θ(U/md) = S/md for d ∈ Pt. We will use the following notation:

Notation 3.1.1. Given a point d ∈ Pt, let P (d) be the left point module θ(U/md) =

S/md of S.

We may also describe point modules over S by their point sequences. If M is a

point module over S, then the annihilator of Mn in S1 = U1 is some codimension 1

subspace which corresponds to a point dn ∈ Pt. The point sequence of M is defined

to be the sequence (d0, d1, d2, . . . ) of points of Pt. Clearly two S-point modules are

isomorphic if and only if they have the same point sequence.

Lemma 3.1.2. Let d be an arbitrary point of Pt.

(1) P (d) has point sequence (d, ϕ(d), ϕ2(d), . . . ).

(2) (P (d))≥n ∼= P (ϕn(d))[−n] as S-modules.

Proof. (1) By definition P (d) = S/md. If f ∈ S1, then fSn = φn(f) ◦Un ⊆ md if and

only if φn(f) ∈ md, in other words f ∈ φ−n(md) = mϕn(d).

(2) By part (1), (P (d))≥n is the shift by (−n) of the point module with point

sequence (ϕn(d), ϕn+1(d), . . . ).

Finally, we record the following simple facts which we shall use frequently.

Lemma 3.1.3. (1) If M is a cyclic graded 1-critical S-module, then M ∼= P (d)[i]

for some d ∈ Pt and i ∈ Z.

(2) If M ∈ S -gr, then M has a finite filtration with factors which are graded cyclic

critical S-modules.

Proof. (1) The equivalence of categories U -Gr ∼ S -Gr preserves the GK-dimension

of finitely generated modules, since it preserves Hilbert functions, and so it also
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preserves the property of being GK-critical. It is standard that the cyclic 1-critical

graded U -modules are just the point modules over U and their shifts. Under the

equivalence of categories, the corresponding S-modules are the S-point modules and

their shifts.

(2) Each module N ∈ U -gr has a finite filtration composed of graded cyclic critical

U -modules, so the same holds for S-modules by the equivalence of categories.

3.2 The algebras R(ϕ, c)

Let S = S(ϕ) for some ϕ ∈ Aut Pt. For any codimension-1 subspace V of S1 = U1,

we let R = k〈V 〉 ⊆ S be the subalgebra of S generated by V . The vector subspace V

of U1 corresponds to a unique point c ∈ Pt. Then R is determined up to isomorphism

by the geometric data (ϕ, c) and we write R = R(ϕ, c). We emphasize again that we

always assume that t ≥ 2 from now on; for smaller t the ring R is not very interesting.

We shall see that the basic properties of R(ϕ, c) depend closely on properties of

the iterates of the point c under ϕ. It is convenient to let ci = ϕ−i(c) for all i ∈ Z.

Then the ideal of the point ci is φi(mc). In case c has finite order under ϕ, that

is φn(c) = c for some n > 0, the algebra R(ϕ, c) behaves quite differently from the

case where c has infinite order. The finite order case turns out to have none of the

interesting properties of the infinite order case (see Lemma 5.2.5), and so we will

exclude it.

Standing Hypothesis 3.2.1. Assume that (ϕ, c) ∈ (Aut Pt)×Pt is given such that

c has infinite order under ϕ, or equivalently the points {ci}i∈Z are distinct.

We note some relationships among the various R(ϕ, c). In particular, part (1) of

the next lemma will allow us to transfer our left sided results to the right.
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Lemma 3.2.2. Let (ϕ, c) ∈ (Aut Pt) × Pt, and let ψ be any automorphism of Pt.

Then

(1) R(ϕ, c)op ∼= R(ϕ−1, ϕ(c)).

(2) R(ϕ, c) ∼= R(ψϕψ−1, ψ(c)).

Proof. (1) Set S = S(ϕ) and S ′ = S(ϕ−1), identifying the underlying spaces of each

with that of U . Let φ be an automorphism of U corresponding to ϕ. Then it is

straightforward to check that the vector space map defined on the graded pieces of

U by sending f ∈ Um to φ−m(f) ∈ Um is a graded algebra isomorphism from Sop to

S ′. The isomorphism maps (mc)1 to (mϕ(c))1 and so it restricts to an isomorphism

R(ϕ, c)op ∼= R(ϕ−1, ϕ(c)).

(2) Similarly, let σ be an automorphism of U corresponding to ψ. One checks

that the vector space map of U defined by f 7→ σ−1(f) is an isomorphism of S(ϕ)

onto S(ψϕψ−1) which maps (mc)1 to σ−1(mc)1 = (mψ(c))1, and so restricts to an

isomorphism R(ϕ, c) ∼= R(ψϕψ−1, ψ(c)).

We now prove an important characterization of the elements of R = R(ϕ, c) which

is foundational for all that follows.

Theorem 3.2.3. Let R = R(ϕ, c), and assume Hypothesis 3.2.1. Then for all n ≥ 0,

Rn = {f ∈ Un | f(ci) = 0 for 0 ≤ i ≤ n− 1}.

Proof. By definition R = k〈V 〉 ⊆ S, where V = (mc)1 considered as a subset of U .

For n = 0 the statement of the theorem is R0 = U0 = k, which is clearly correct, so

assume that n ≥ 1. Then

Rn = V n = φn−1(V ) ◦ φn−2(V ) ◦ . . . ◦ φ(V ) ◦ V.
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Now φi(V ) = (mci)1, and the points ci are distinct by Hypothesis 3.2.1. Thus by

Lemma 2.5.8 we get that

Rn = (mcn−1)1 ◦ . . . ◦ (mc1)1 ◦ (mc0)1 = [(mcn−1) ◦ . . . ◦ (mc1) ◦ (mc0)]n

= [(mcn−1) ∩ · · · ∩ (mc1) ∩ (mc0)]n.

The statement of the theorem in degree n follows.

The theorem has a number of easy consequences.

Lemma 3.2.4. Let R = R(ϕ, c). Then dimk Rn =
(
n+t
t

)
− n for all n ≥ 0. In

particular, GK(R) = t + 1.

Proof. The Hilbert function of R follows from Theorem 3.2.3 and Lemma 2.5.6. Since

we always assume that t ≥ 2, it is clear that the Hilbert polynomial of R has degree

t and so GK(R) = t+ 1.

Lemma 3.2.5. The rings R = R(ϕ, c) and S = S(ϕ) have the same graded quotient

ring D and Goldie quotient ring Q. The inclusion R ↪→ S is a essential extension of

left (or right) R-modules.

Proof. Since both R and S are domains of finite GK-dimension, they both have

graded quotient rings and Goldie quotient rings (see §2.1), and clearly the graded

quotient ringD′ ofR is contained in the graded quotient ringD of S. Since we assume

always that t ≥ 2, we may choose a nonzero polynomial g ∈ S1 with g ∈ mc0 ∩ mc1 .

Then Theorem 3.2.3 implies that g ∈ R1 and S1g ⊆ R2. Thus S1 ⊆ R2(R1)
−1 ⊆ D′

and consequently D′ = D. Then Q, the Goldie quotient ring of the domain D, is also

the Goldie quotient ring for both R and S. The last statement of the proposition is

now clear.
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3.3 The noetherian property for R

Let S = S(ϕ) and R = R(ϕ, c). In this section we will characterize those choices

of ϕ and c satisfying Hypothesis 3.2.1 for which the ring R is noetherian. To do this,

we will first analyze the structure of the factor module R(S/R) in detail, and then

use this information to understand contractions and extensions of left ideals between

R and S.

The following notation will be convenient in this section.

Notation 3.3.1.

(1) An = {0, 1, . . . n− 1} for n > 0 and An = ∅ for n ≤ 0.

(2) For B ⊆ Z, set B +m = {b+m | b ∈ B}.

Definition 3.3.2. Let B ⊆ N. We define a left R-module TB ⊆ S by specifying its

graded pieces as follows:

(TB)n = {f ∈ Sn | f(ci) = 0 for i ∈ An \B}

We then define the left R-module MB = TB/R ⊆ (S/R).

We should check that TB really is closed under left multiplication by R. If g ∈ Rm

and f ∈ (TB)n, then gf = φn(g) ◦ f . Now g(ci) = 0 for i ∈ Am by Theorem 3.2.3

and f(ci) = 0 for i ∈ An \ B by definition. Thus [φn(g) ◦ f ](ci) = 0 for i ∈

(Am + n) ∪ (An \ B) ⊇ (An+m \ B), and so gf ∈ (TB)n+m as required. Also, by

Theorem 3.2.3 the extreme cases are R = T ∅ and S = TN. In particular, R ⊆ TB

always holds, and so MB is well defined.

Lemma 3.3.3. The Hilbert function of MB is given by

dimk(M
B)n = |An ∩ B|.
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Proof. Immediate from Lemma 2.5.6.

In the special case of Definition 3.3.2 where B is a singleton set, MB is just a

shifted R-point module.

Lemma 3.3.4. Let j ∈ N. Then M = M {j} is an R-point module shifted by j + 1.

In fact, M ∼= RP (c−1)[−j − 1].

Proof. By Lemma 3.3.3 the Hilbert function of M is

dimkMn =





0 0 ≤ n ≤ j

1 j + 1 ≤ n

so that M does have the Hilbert function of a point module shifted by j + 1. For

convenience of notation set m = j +1, and let us calculate annR(Mm). Now fMm =

0 for f ∈ Rn if and only if f(T {j})m ⊆ Rm+n. Since Mm 6= 0, we may choose

g ∈ (T {j})m such that g 6∈ R; then g(cj) 6= 0. Also, because dimkMm = 1 it is clear

that (T {j})m = Rm + kg, and so f(T {j})m ⊆ R if and only if fg ∈ R. Now fg =

φm(f)◦g, and so by Theorem 3.2.3 we have that fg ∈ R if and only if φm(f)(cj) = 0,

equivalently f(c−1) = 0, since m = j + 1. In conclusion, annR(Mm) = mc−1 ∩ R.

Thus we have an injection of R-modules given by right multiplication by g:

ψ : (R/(mc−1 ∩R))[−m]
g−→ T {j}/R = M.

By Lemma 2.5.6, R/(mc−1 ∩ R) has the Hilbert function of a point module and so

both sides have the same Hilbert function. Thus ψ is actually an isomorphism. In

particular, M is cyclic and so is a shifted R-point module.

We also have the injection R/(mc−1 ∩ R) → S/(mc−1) = P (c−1), and since both

sides have the Hilbert function of a point module this is also an isomorphism of

R-modules. So M ∼= R(P (c−1))[−j − 1].
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We may now understand the structure of R(S/R) completely.

Proposition 3.3.5. The modules {M {j}}j∈N are independent submodules of S/R.

Also, for B ⊆ N,

MB =
⊕

j∈B

M{j}.

Proof. We first show the independence of the M {j}. It is enough to work with

homogeneous elements; fix n ≥ 0 and let
∑

j∈N
fj = 0 for some fj ∈ (M{j})n. Let

fj = gj + R for some elements gj ∈ (T {j})n ⊆ Sn. Thus
∑
gj ∈ Rn. Suppose that

some fj 6= 0, and let k = min{j|fj 6= 0}. Now (M {j})≤j = 0 for all j by Lemma 3.3.3,

and so we must have k ≤ n− 1. Then k ∈ An \ {j} for any j 6= k, so that gj(ck) = 0

for all j 6= k, by the definition of T {j}. Since
∑
gj ∈ Rn, Theorem 3.2.3 implies that

(
∑
gj)(ck) = 0 also holds and so gk(ck) = 0. But then gk ∈ (T {k})n ∩ (mck) = Rn,

and thus fk = 0, a contradiction. We conclude that all fj = 0, and so the M {j} are

independent.

For the second statement of the proposition, by Lemma 3.3.3 the Hilbert function

of MB is dimk(M
B)n = |An ∩B|, while the Hilbert function of

⊕
j∈BM

{j} is

dimk

[⊕

j∈B

M{j}
]
n

= #{j ∈ B|j ≤ n− 1} = |An ∩ B|.

Thus the Hilbert functions are the same on both sides of our claimed equality. Since

∑
j∈BM

{j} ⊆ MB is clear and we know that the M {j} are independent by the first

part of the proposition, the equality follows.

Corollary 3.3.6. (1) Given B ⊆ N, MB is a noetherian R-module if and only if

the set B has finite cardinality.

(2) R(S/R) ∼=
∞⊕

j=0

RP (c−1)[−j − 1]. In particular, R(S/R) is not finitely generated.

Proof. (1) is clear since a point module is noetherian. (2) follows by taking B = N

in the proposition and using also Lemma 3.3.4.
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Next, we analyze the noetherian property for some special types of R-modules

which may be realized as subfactors of S/R.

Proposition 3.3.7. For f ∈ Rn, let N = (Sf ∩ R)/Rf ∈ R -Gr. Set D = {i ∈ N |

f(ci) = 0} and B = (D − n) ∩ N. Then

(1) N ∼= MB[−n].

(2) N is noetherian if and only if |D| <∞.

Proof. First, if we set T = {g ∈ S | gf ∈ R} and M = T/R, then N ∼= M [−n]. So

it is enough for (1) to show that T = TB.

Let g ∈ Sm be arbitrary. Note that An ⊆ D since f ∈ Rn. Then

gf = φn(g) ◦ f ∈ R

⇐⇒ [φn(g) ◦ f ](ci) = 0 for all i ∈ An+m

⇐⇒ φn(g)(ci) = 0 for all i ∈ An+m \D

⇐⇒ g(ci) = 0 for all i ∈ (An+m \D) − n

⇐⇒ g(ci) = 0 for all i ∈ Am \ (D − n) (since An ⊆ D)

⇐⇒ g ∈ TB by Definition 3.3.2

Thus T = TB and (1) holds.

For (2), note that D has finite cardinality if and only if B does, and apply Corol-

lary 3.3.6(1).

Proposition 3.3.8. For f ∈ Rn, let M = S/(R + Sf) ∈ R -Gr. Set D = {i ∈ N |

f(ci) = 0}. Then

(1) M ∼= MD.

(2) M is noetherian if and only if |D| <∞.
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Proof. Set B = N \D. We will show that R + Sf = TB. Then we will have that

S/(R + Sf) = S/TB ∼= (MN/MB) ∼= MD by Proposition 3.3.5.

Suppose that h ∈ (R+Sf)m; then h = g1 +g2f = g1 +φn(g2)◦f for some g1 ∈ Rm

and g2 ∈ Sm−n. Now g1(ci) = 0 for i ∈ Am, and f(ci) = 0 for i ∈ D, so that h(ci) = 0

for i ∈ Am ∩D. So we have (R + Sf) ⊆ TB.

Note that (R + Sf)m = Rm = (TB)m for m < n, so assume that m ≥ n and

let h ∈ (TB)m. Since {0, 1, . . . n − 1} ⊆ D, we have |Am \ D| ≤ m − n. Fix some

particular choices of homogeneous coordinates for the ci, so that g(ci) is defined for

homogeneous g ∈ U . We may choose g ∈ Um−n such that [φn(g)](ci) = h(ci)/f(ci)

for all i ∈ Am \D, by Lemma 2.5.7. Then [h− φn(g) ◦ f ](ci) = 0 for all i ∈ Am and

so h− gf ∈ R. Thus h ∈ R + Sf . We conclude that (R + Sf) = T B, as we wished,

and (1) is proved.

Part (2) is then immediate from Corollary 3.3.6(1).

Given a left ideal I of R, we may extend to a left ideal SI of S, and then contract

back down to get the left ideal SI ∩ R of R. The factor (SI ∩ R)/I is built up out

of the 2 types of modules we considered in Propositions 3.3.7 and 3.3.8.

Lemma 3.3.9. Let I be a finitely generated nonzero graded left ideal of R, and set

M = (SI ∩ R)/I. Then M has a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm =

M such that each factor Mi+1/Mi is isomorphic with shift to a subfactor of either

(Ssi ∩ R)/Rsi or S/(R + Ssi) for some nonzero homogeneous si ∈ R.

Proof. Let I =
∑n

i=1Rri for some homogeneous ri ∈ R. If n = 1 the result is obvious,

so assume that n ≥ 2.

Set J =
∑n−1

i=1 Rri. By induction on n, (SJ ∩R)/J and hence also (SJ ∩R)+ I/I
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have filtrations of the required type. It is enough then to show that

N = (SI ∩R)/((SJ ∩ R) + I) = (SI ∩R)/((SJ +Rrn) ∩ R)

has the required filtration. But N injects into L = SI/(SJ+Rrn). Now R is an Ore

domain by Lemma 3.2.5, so we may choose 0 6= r ∈ R such that rrn ∈ J . Then L is

a surjective image (with shift) of S/(R+Sr), so N is a subfactor of S/(R+Sr).

In certain circumstances the noetherian property passes to subrings. The following

lemma is just a slight variant of a number of similar results in the literature (for

example, see [2, Lemma 4.2]).

Lemma 3.3.10. Let A ↪→ B be any extension of N-graded rings. Suppose that B

is left noetherian, and that (BI ∩ A)/I is a noetherian left A-module for all finitely

generated homogeneous left ideals I of A. Then A is left noetherian.

Proof. It is enough to prove that A is graded left noetherian, that is that all homoge-

neous left ideals are finitely generated. Let I be a homogeneous left ideal of A. Then

BI is a homogeneous left ideal of B, which is finitely generated since B is noetherian,

and so we may pick a finite set of homogeneous generators r1, r2, . . . rn ∈ I such that

BI =
∑n

i=1Bri. Let J =
∑n

i=1Ari. Then BI = BJ , and since J is finitely generated

over A we may apply the hypothesis to conclude that (BJ ∩ A)/J = (BI ∩ A)/J is

a noetherian A-module. The submodule I/J of (BI ∩ A)/J is then noetherian over

A, in particular finitely generated over A. Finally, since J is finitely generated over

A, so is I.

We note the definition of an unusual geometric condition on a set of points of a

variety, which appeared in [2, p. 582].
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Definition 3.3.11. Let S be an infinite set of (closed) points of a variety X. We

say S is critically dense in X if every proper Zariski-closed subset Y ( X contains

only finitely many points of S.

We may now prove our main result characterizing the noetherian property for R.

Theorem 3.3.12. Let R = R(ϕ, c) for some (ϕ, c) ∈ (Aut Pt) × Pt such that Hy-

pothesis 3.2.1 holds. As always, set ci = ϕ−i(c). Then

(1) R(ϕ, c) is left noetherian if and only the set {ci}i≥0 is critically dense in Pt.

(2) R(ϕ, c) is right noetherian if and only the set {ci}i≤−1 is critically dense in Pt.

(3) R(ϕ, c) is noetherian if and only the set {ci}i∈Z is critically dense in Pt.

Proof. (1) Set C = {ci}i≥0 and suppose that C is critically dense. Then for any

nonzero homogeneous polynomial f ∈ R, the set D = {i ∈ N|f(ci) = 0} is finite,

so by Propositions 3.3.7 and 3.3.8 the left R modules (Sf ∩R)/Rf and S/(R+ Sf)

are noetherian. By Lemma 3.3.9, for any finitely generated homogeneous left ideal

I of R, the left R-module (SI ∩ R)/I is noetherian. By Lemma 3.3.10, R is a left

noetherian ring.

Conversely, if C fails to be critically dense, then we may choose a nonzero homo-

geneous polynomial h ∈ S which vanishes at infinitely many points of C. Since by

Lemma 3.2.5 we know that R ↪→ S is an essential extension of R-modules, there

exists a homogeneous g ∈ R such that 0 6= f = gh ∈ R. Then f also vanishes

at infinitely many points of C, and so by Proposition 3.3.7 (Sf ∩ R)/Rf is not a

noetherian left R-module. Since this module is a subfactor of R, we conclude that

R is not a left noetherian ring.

(2) Using Lemma 3.2.2(1), this part follows immediately from part (1).

(3) This follows from the fact that for any infinite sets C1, C2 ⊆ Pt, C1 ∪ C2 is
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critically dense if and only if both C1 and C2 are.

In Section 5.1 we will examine the critical density condition appearing in Theo-

rem 3.3.12 more closely. In particular, we shall prove that there exist many choices

of ϕ and c for which R(ϕ, c) is noetherian:

Proposition 3.3.13. (See Theorem 5.1.5 below) Let ϕ be the automorphism of Pt

defined by (a0 : a1 : · · · : at) 7→ (a0 : p1a1 : p2a2 : · · · : ptat), and let c be the point

(1 : 1 : · · · : 1) ∈ Pt. If the scalars {p1, p2, . . . pt} are algebraically independent over

the prime subfield of k, then {ci}i∈Z is critically dense and R(ϕ, c) is noetherian. �

The noetherian case is our main interest, so in the remainder of Chapter III and

throughout Chapter IV we will assume the following hypothesis.

Standing Hypothesis 3.3.14. Let ci = ϕ−i(c). Assume that the point set {ci}i∈Z

is critically dense in Pt, so that R(ϕ, c) is noetherian. We will refer to this as the

critical density condition.

Below, we will frequently use the following exact sequence to study an arbitrary

cyclic left R-module R/I:

(3.3.15) 0 → (SI ∩R)/I → R/I → S/SI → S/(R + SI) → 0.

We note what the results of this section tell us about the terms of this sequence.

Lemma 3.3.16. Assume the critical density condition, and let 0 6= I be a graded

left ideal of R.

(1) As left R-modules, (SI ∩R)/I and S/(R+SI) have finite filtrations with factors

which are either torsion or a tail of the shifted R-point module R(P (c−1))[−i] for

some i ≥ 0. In particular, S/(R + SI) is a noetherian left R-module.

(2) R(S/J) is a noetherian module for all nonzero left ideals J of S.
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Proof. (1) Let 0 6= f ∈ R be arbitrary. Since {ci}i∈Z is a critically dense set,

f(ci) = 0 holds for only finitely many i ∈ Z. Then by the results 3.3.4—3.3.8, the

left R-modules (Sf ∩ R)/Rf and S/(R + Sf) are isomorphic to finite direct sums

of shifted point modules of the form R(P (c−1))[−i] for various i ≥ 0. Now using

Lemma 3.3.9, it is clear that (SI ∩R)/I has a filtration of the right kind. Similarly,

S/(R+ SI) is a homomorphic image of S/(R+ Sf) for any 0 6= f ∈ I, so it also has

the required filtration and is clearly noetherian.

(2) It is immediate from the exact sequence (3.3.15) for I = Rr and part (1)

that R(S/Sr) is noetherian for any homogeneous 0 6= r ∈ R. It is enough to show

that R(S/Sx) is noetherian for an arbitrary homogeneous 0 6= x ∈ S. There is some

nonzero homogeneous y ∈ R such that yx ∈ R, by Lemma 3.2.5. Then since (S/Syx)

is a noetherian R-module, so is S/Sx.

3.4 Point modules and the strong noetherian property

Let S = S(ϕ) and R = R(ϕ, c) for (ϕ, c) satisfying the critical density condition,

so that R is noetherian. Recall from §2.1 the definition of point modules and point

ideals for an N-graded algebra. Using an explicit presentation for the ring, Jordan [19]

classified the point modules for R in a special case. We classify the point modules

for the rings R(ϕ, c) in general and get a similar result, using a different method

which does not rely on relations. From the classification it will follow that R is not

strongly noetherian, using a Theorem of Artin and Zhang (see §1.4).

We have already seen that the point modules over S are easily classified up to

isomorphism—they are simply the {P (d) | d ∈ Pt} (recall Notation 3.1.1). There is

a close relationship between the point modules over the rings S and R, as we begin

to see in the next proposition.
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Proposition 3.4.1. Let M be a point module over R. Then M≥n
∼= R(P≥n) for some

S-point module P and some n ≥ 0.

Proof. We have M = R/I for a unique point ideal I of R. We will use the exact

sequence (3.3.15); there are two cases.

Suppose first that (SI ∩ R)/I = 0. Then we have an injection R/I → S/SI. By

Lemma 3.3.16(1) we know that GKR(S/(R + SI)) ≤ 1, and clearly GKR(R/I) =

1, so that GKR(S/SI) = 1 since GK-dimension is exact for modules over the

graded noetherian ring R. By Lemma 3.3.16(2), R(S/SI) is finitely generated, and

so GKS(S/SI) = GKR(S/SI) = 1 since for finitely generated modules the GK-

dimension depends only on the Hilbert function. Now choose a filtration of S/SI

composed of cyclic critical S-modules (Lemma 3.1.3(2)); the factors must be shifts

of S-point modules and Sk. Since M is a R-submodule of S/SI, this forces some tail

of M to agree with a tail of an S-point module.

Suppose instead that N = (SI ∩ R)/I 6= 0. Then N is a nonzero submodule of

the point module M , so it is equal to a tail of M . By Lemma 3.3.16(1), some tail

of N , and thus a tail of M , must be isomorphic as an R-module to a tail of some

P (c−1)[−i] ∼= P (c−1−i)≥i (using also Lemma 3.1.2).

The next two results are technical preparation for the R-point module classifica-

tion.

Lemma 3.4.2. Let I, J be point ideals for the ring R. If I≥m = J≥m for some

m ≥ 0 then I = J .

Proof. Suppose that I 6= J . Let n be minimal such that In 6= Jn. Then R1In ⊆

In+1 and R1Jn ⊆ Jn+1 = In+1 and thus R1(Jn + In) ⊆ In+1. Since dimk In =

dimk Jn = dimk Rn − 1 and In 6= Jn, In + Jn = Rn and so Rn+1 = R1Rn ⊆ In+1, a
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contradiction.

For the rest of this section we will make frequent use of the criterion for R-

membership given in Theorem 3.2.3 without comment. Also, recall that ◦ indicates

multiplication in the polynomial ring U , and juxtaposition indicates multiplication

in S (or R).

Lemma 3.4.3. (1) Suppose that d is a point of Pt with d 6∈ {ci}i≥0. Then

(R ∩ md)mR1 = (R ∩ mϕ−1(d))m+1 for m� 0.

(2) (R ∩ mc−1)mR1 = (R ∩ m2
c0

)m+1 for m� 0.

(3) Fix some i ≥ 0. Then (R ∩ m2
ci
)mR1 = (R ∩ m2

ci+1
)m+1 for m� 0.

(4) If RP (d1)≥n ∼= RP (d2)≥n for d1, d2 ∈ Pt and some n ≥ 0, then d1 = d2.

Proof. (1) Note that the critical density condition implies that for m� 0 the points

c1, . . . , cm−1 do not all lie on a single line of Pt. By Lemma 2.5.9(1),

(R ∩ md)mR1 = (mcm ∩ mcm−1 ∩ · · · ∩ mc1 ∩ mϕ−1(d))m ◦ (mc0)1

= (mcm ∩ mcm−1 ∩ · · · ∩ mc1 ∩ mc0 ∩ mϕ−1(d))m+1 = (R ∩ mϕ−1(d))m+1

for m� 0.

(2), (3) Similar to the argument for (1), using Lemma 2.5.9 parts (2) and (3) respec-

tively.

(4) By Lemma 3.1.2, we have for any d ∈ Pt that P (d)≥n ∼= P (ϕn(d))[−n] as S-

modules. Thus we may reduce to the case where n = 0.

Since annS P (di)0 = mdi
, we must have md1 ∩ R = md2 ∩ R. In degree m this

means

(3.4.4) (mc0 ∩ · · · ∩ mcm−1 ∩ md1)m = (mc0 ∩ · · · ∩ mcm−1 ∩ md2)m.
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Suppose first that d1, d2 6∈ {ci}i∈N. Since the point set {ci}i∈Z is critically dense,

it follows that for m � 0 the points {ci}m−1
i=0 do not all lie on a line. Then by

Lemma 2.5.9(4), the equation (3.4.4) for m� 0 implies that d1 = d2.

Otherwise we may assume without loss of generality that d1 = cj for some j ≥ 0

and that d2 6∈ {ci}j−1
i=0 . Then the equation (3.4.4) for n = j + 1 violates Lemma 2.5.6

unless d1 = cj = d2.

We may now classify the point modules over the ring R(ϕ, c).

Theorem 3.4.5. Assume the critical density condition (Hypothesis 3.3.14).

(1) For any point d ∈ Pt \ {ci}i≥0, the S-point module P (d) is an R-point module,

with point ideal (R ∩ md).

(2) For each i ≥ 0, the S-module P (ci)≥i+1 is a shifted R-point module. There is a

Pt−1-parameterized family of non-isomorphic R-point modules {P (ci, e) | e ∈ Pt−1}

with P (ci, e)≥i+1
∼= RP (ci)≥i+1 and P (ci, e)≤i ∼= RP (ci)≤i for any e ∈ Pt−1. These

are exactly the point modules whose point ideals contain the left ideal (R∩m2
ci
) of R.

(3) All of the point modules given in parts (1) and (2) above are non-isomorphic,

and every point module over R(ϕ, c) is isomorphic to one of these.

Proof. Suppose that d ∈ Pt, so P (d) = S/md by definition. For any i ≥ 0,

(3.4.6) R1(P (d))i = 0 ⇐⇒ R1Si ⊆ md ⇐⇒ (mci)1 ◦ Ui ⊆ md ⇐⇒ d = ci.

(1) Let d 6∈ {ci}i≥0. In this case it is clear from (3.4.6) that P (d) is already an

R-point module. Also, the corresponding point ideal is annR P (d)0 = R ∩ md.

(2) Fix some i ≥ 0. From (3.4.6) it is clear that M = RP (ci) = M≤i ⊕M≥i+1

where M≤i is the torsion submodule of M and M≥i+1 is a shifted R-point module.

We define a left ideal J = J (i) of R by setting J≤i = (R ∩ mci)≤i and J≥i+1 =
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(R ∩ m2
ci
)≥i+1. To check that J really is a left ideal of R, one calculates

R1Ji = φi(mc0)1 ◦ Ji = (mci)1 ◦ (Ri ∩ mci) ⊆ Ri+1 ∩ m
2
ci

= Ji+1.

We will now classify the point ideals of R which contain J . By Lemma 2.5.6, the

Hilbert function of R/J must be

dimk(R/J)j =





1 j ≤ i

t j ≥ i + 1.

Then using Lemma 2.5.6 again, the natural injection

(R/J)≥i+1 =
(mc0 ∩ mc1 ∩ · · · ∩ mci)≥i+1

(mc0 ∩ mc1 ∩ · · · ∩ m2
ci
)≥i+1

↪→ (mci/m
2
ci
)≥i+1

is an isomorphism of left R-modules, since the Hilbert functions on both sides are

the same.

As a module over the polynomial ring U , we have an isomorphism

(mci/m
2
ci
)≥i+1

∼=
t⊕

j=1

(U/mci)≥i+1

which by the equivalence of categories U -Gr ∼ S -Gr translates to an S-isomorphism

as follows:

S(mci/m
2
ci
)≥i+1

∼=
t⊕

j=1

P (ci)≥i+1.

By part (1), P (ci)≥i+1
∼= P (c−1)[−i− 1] is a shifted R-point module, so we conclude

that M = (R/J)≥i+1 is a direct sum of t isomorphic shifted R-point modules. Then

every choice of a codimension-1 vector subspace V = L/(Ji+1) of (R/J)i+1 generates

a different R-submodule N of M with M/N ∼= RP (ci)≥i+1, and then J + RL is a

point ideal for R. Clearly any point ideal containing J must arise in this way, and

the set of codimension 1 subspaces of (R/J)i+1 is parameterized by Pt−1. Thus the

set of point ideals of R which contain J is naturally parameterized by a copy of Pt−1.
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For each e ∈ Pt−1, we have a corresponding point ideal I containing J and we

set P (ci, e) = R/I. Then P (ci, e)≥i+1
∼= RP (ci)≥i+1 and P (ci, e)≤i ∼= (R/J)≤i ∼=

RP (ci)≤i.

Finally, note that all of the point ideals constructed above contain (R ∩ m2
ci
).

Conversely, if I is any point ideal which contains (R ∩ m2
ci
), then J≤i + I≥i+1 is also

a point ideal, and so by Lemma 3.4.2 it follows that I = J≤i + I≥i+1 ⊇ J and I is

one of the point ideals we already constructed. Part (2) is now clear.

(3) Suppose that M is an R-point module. Let P be the set of all R-modules

isomorphic to a shift of one of the R-point modules constructed in parts (1) and

(2) above. By Proposition 3.4.1, M≥n
∼= RP (d)≥n for some n ≥ 0 and d ∈ Pt. For

m� 0, ϕm(d) 6∈ {ci}i≥0 and so M≥m+n ∈ P by part (1) above. Thus to prove (3) it

is enough by induction to show that given any R-point module N , if N≥1 ∈ P then

N ∈ P.

Let N be an R-point module such that N≥1 ∈ P. Let I = annRN0 be the point

ideal of N . There are a number of cases. Suppose first that N≥1
∼= RP (d)[−1]

for some d 6∈ {ci}i≥−1. Since (R ∩ md)R1 ⊆ I, Lemma 3.4.3(1) implies that we have

(R∩mϕ−1(d))≥m ⊆ I for some m ≥ 0. Note that ϕ−1(d) 6∈ {ci}i≥0, so that (R∩mϕ−1(d))

is one of the point ideals appearing in part (1) above. Since I is also a point ideal,

Lemma 3.4.2 implies that I = (R ∩ mϕ−1(d)) and thus N ∼= RP (ϕ−1(d)) ∈ P.

If N≥1
∼= RP (c−1), then (R ∩ mc−1)R1 ⊆ I and by Lemma 3.4.3(2) we conclude

that (R ∩ m2
c0)≥m ⊆ I for m � 0. But since I is a point ideal, this implies that

(R ∩ m2
c0

) ⊆ I. By part (2) above that this forces N ∼= P (c0, e) for some e ∈ Pt−1,

and so N ∈ P.

The last case is if N≥1
∼= P (ci, e)[−1] for some i ≥ 0 and e ∈ Pt−1. Then since

(R∩m2
ci
)R1 ⊆ I, by Lemma 3.4.3(3) we conclude that (R∩m2

ci+1
)≥m ⊆ I for m� 0.
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Then just as in the previous case this will force N ∼= P (ci+1, e
′) ∈ P for some

e′ ∈ Pt−1.

Finally, for fixed i the P (ci, e) are non-isomorphic for distinct e by construction;

then it follows from Lemma 3.4.3(4) that all of the point modules we have constructed

in parts (1) and (2) are non-isomorphic.

Recall from §1.4 that a k-algebra A is called strongly (left) noetherian if A⊗k B

is a left noetherian ring for all commutative noetherian k-algebras B. We also say

that a left A-module P is strongly noetherian if P ⊗k B is noetherian over A ⊗k B

for all commutative noetherian k-algebras B. The strong noetherian property holds

for all finitely generated commutative k-algebras. It also holds for many standard

examples of noncommutative rings, including all twisted homogeneous coordinate

rings of projective k-schemes, and the AS-regular algebras of dimension three [2,

Section 4]. Artin and Zhang have shown the importance of the strong noetherian

property for the study of the geometry of the point modules over an algebra, as

we noted in §1.4. Let us now give a more detailed discussion of Artin and Zhang’s

theorem.

We want to make formal the notion of a scheme parameterizing the set of point

modules. This is done by considering commutative extension rings of the base field.

Let A be a finitely N-graded algebra over a field k. Given h : Z → N any function

and P ∈ A -gr, we may consider the set

Qh
P = {all graded factor modules of P with Hilbert function h}.

For every commutative k-algebra B, we write AB = A⊗k B and PB = P ⊗k B. We

may extend the definition of Qh
P to the rings AB as follows. If B is finitely generated
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as a k-algebra, we set

Qh
P (B) = {all graded flat quotients V of PB with rank Vi = h(i) for all i ≥ 0}.

For an arbitrary commutative k-algebra B, we then define

Qh
P (B) = lim

−→
Qh
P (B′)

where the direct limit is taken over all finitely generated subalgebras B ′ of B. The

map B 7→ Qh
P (B) is a contravariant functor from {rings} to {sets}. Then to say that

Qh
P (k) is parameterized by the k-scheme Y is to say that the functorQh

P is represented

by Y ; that is, Qh
P is naturally equivalent to the functor C 7→ Homk -schemes(Spec C, Y ).

Now we may state Artin and Zhang’s theorem.

Theorem 3.4.7. [9] Let A be a connected, finitely generated N-graded algebra over

an algebraically closed field k. Then for every strongly noetherian module P ∈ A -gr

and Hilbert function h, the set Qh
P (k) is parameterized by a commutative projective

scheme over k. �

Restricting to the special case of the theorem where P = A and h is the constant

function h(i) = 1 for all i, the authors prove the following corollary concerning point

modules.

Corollary 3.4.8. [9, Corollary E4.11, Corollary E4.12]. Let A be a connected N-

graded strongly noetherian algebra over an algebraically closed field k.

(1) The point modules over A are naturally parameterized by a commutative projective

scheme over k.

(2) There is some d ≥ 0 such that every point module M for A is uniquely determined

by its truncation M≤d. �
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The failure of the strong noetherian property for R = R(ϕ, c) now follows imme-

diately from the above corollary and the classification of point modules for R. This

proves Theorem 1.4.5, and answers Question 1.4.3 from the introduction.

Theorem 3.4.9. Assume the critical density condition. Then R = R(ϕ, c) is a con-

nected graded noetherian algebra, finitely generated in degree 1, which is noetherian

but not strongly noetherian. �

Proof. We only need to prove that R is not strongly noetherian. For each i ≥

0, Theorem 3.4.5(2) provides a whole Pt−1 of point modules P (ci, e) which have

isomorphic truncations P (ci, e)≤i. By Corollary 3.4.8(2), R cannot be a strongly

noetherian k-algebra.

We remark that the point modules over R still appear to have an interesting

geometric structure. By Theorem 3.4.5, there is a single point module corresponding

to each point d ∈ Pt \ {ci}i≥0 and a Pt−1-parameterized family of exceptional point

modules corresponding to each point ci with i ≥ 0. Since blowing up Pt at a point in

some sense replaces that point by a copy of Pt−1, the intuitive picture of the geometry

of the point modules for R is an infinite blowup of projective space at a countable

point set.

3.5 Extending the base ring

Let S = S(ϕ) and R = R(ϕ, c) for (ϕ, c) satisfying the critical density condition,

and let ci = ϕ−i(c) ∈ Ptk as usual. We now know by Theorem 3.4.9 that R is not

strongly noetherian, but this proof is quite indirect and it is not obvious which choice

of extension ring B makes R⊗k B non-noetherian. In this section we construct such

a noetherian commutative k-algebra B which is even a UFD.
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Let B be an arbitrary commutative k-algebra which is a domain. We will use

subscripts to indicate extension of the base ring, so we write UB = U⊗kB, SB = S⊗k

B andRB = R⊗kB. The automorphism φ of U extends uniquely to an automorphism

of UB fixing B, which we also call φ. We continue to identify the underlying B-module

of SB with that of UB, and we use juxtaposition for multiplication in SB and the

symbol ◦ for multiplication in UB, as in our current convention (see §3.1). The

multiplication of SB is still given by fg = φn(f) ◦ g for f ∈ (SB)m, g ∈ (SB)n; in

other words, SB is the left Zhang twist of UB by the twisting system {φi}i∈N, just as

before.

Let d be a point in Ptk. Since the homogeneous coordinates for d are defined only

up to a scalar multiple in k×, given f ∈ UB the expression f(d) is defined up to a

nonzero element of k; we will use this notation only in contexts where the ambiguity

does not matter. For example, the condition f(d) = 0 makes sense and is equivalent

to the condition f ∈ md ◦ UB, where md ⊆ U and md ◦ UB is a graded prime ideal of

UB.

The natural analog of Theorem 3.2.3 still holds in this setting:

Proposition 3.5.1. For all n ≥ 0, we have

(RB)n = {f ∈ (UB)n such that f(ci) = 0 for 0 ≤ i ≤ n− 1}.

Proof. As subsets of UB, using Theorem 3.2.3 we have

(RB)n = Rn ⊗B = (∩n−1
i=0 mci)n ⊗B = ∩n−1

i=0 (mci ◦ UB)n

and the proposition follows.

We now give sufficient conditions on B for the ring R⊗kB to fail to have the left

noetherian property.
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Proposition 3.5.2. Assume that B is a UFD. Suppose that there exist nonzero

homogeneous elements f, g ∈ (UB)1 satisfying the following conditions:

(1) f(ci)|g(ci) for all i ≥ 0.

(2) For all i� 0, f(ci) is not a unit of B.

(3) gcd(f, g) = 1 in UB.

Then R⊗k B is not a left noetherian ring.

Proof. Note that UB ∼= B[x0, x1, . . . , xt] is a UFD, since B is, so condition (3) makes

sense.

For convenience, fix some homogeneous coordinates for the ci. For each n ≥ 0,

we may choose a polynomial θn ∈ Sn with coefficients in k such that θn(ci) = 0 for

−1 ≤ i ≤ n − 2 and θn(cn−1) 6= 0. This is possible, for example, by Lemma 2.5.7.

By hypothesis (1), for each n ≥ 0 we may write Ωn = g(cn)/f(cn) ∈ B. Now let

tn = θn(Ωnf − g) ∈ (SB)n+1 for each n ≥ 0.

Since φ(θn) vanishes at ci for 0 ≤ i ≤ n − 1 and [Ωnf − g](cn) = 0, the element

tn = φ(θn) ◦ (Ωnf − g) is in (RB)n+1, by Proposition 3.5.1. We will show that for

n� 0 we have tn+1 6∈
∑n

i=0(RB)ti, which will imply that RB is not left noetherian.

Suppose that tn+1 =
∑n

i=0 riti for some ri ∈ (RB)n+1−i. Writing out the explicit

expressions for the ti, this is

θn+1(Ωn+1f − g) =
n∑

i=0

riθi(Ωif − g).

Considering these expressions in UB, after some rearrangement we obtain (since f, g

have degree 1)

φ[θn+1Ωn+1 −
n∑

i=0

riθiΩi] ◦ f + φ[−θn+1 +

n∑

i=0

riθi] ◦ g = 0.
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Now by hypothesis (3), g must divide the polynomial

h = φ[θn+1Ωn+1 −
n∑

i=0

riθiΩi] = Ωn+1φ(θn+1) −
n∑

i=0

Ωiφ
i+1(ri) ◦ φ(θi).

We note that [φ(θn+1)](cn) = 0 and [φ(θn)](cn) ∈ k× by the definition of the θi, and

[φi+1(ri)](cn) = 0 for 0 ≤ i ≤ n − 1, since ri ∈ Rn+1−i. Thus evaluating at cn we

conclude that g(cn) | Ωn. But since Ωn = g(cn)/f(cn), this implies that f(cn) is a

unit in B. For all n � 0, this contradicts hypothesis (2), and so tn+1 6∈
∑n

i=0(RB)ti

for n� 0, as we wished to show.

Next, we construct a commutative noetherian ring B which satisfies the hypothe-

ses of Proposition 3.5.2. We shall obtain such a ring as an infinite blowup of affine

space, to be defined presently. See [2, Section 1] for more details about this con-

struction.

Let A be a commutative domain, and let X be the affine scheme Spec A. Suppose

that d is a closed nonsingular point of X with corresponding maximal ideal p ⊆ A,

and let z0, z1, . . . , zr be some choice of generators of the ideal p such that z0 6∈ p2.

The affine blowup of X at d (with denominator z0) is X ′ = Spec A′ where A′ =

A[z1z
−1
0 , z2z

−1
0 . . . , zrz

−1
0 ].

Consider the special case where A = k[y1, y2, . . . , yt] is a polynomial ring, X = At,

and d = (a1, a2, . . . , at). The affine blowup of At at d with the denominator (y1 −a1)

is X ′ = Spec A′ for the ring

A′ = A[(y2 − a2)(y1 − a1)
−1, . . . , (yt − at)(y1 − a1)

−1].

Note that also A′ = k[y1, (y2 − a2)(y1 − a1)
−1, . . . , (yt− at)(y1 − a1)

−1], so A′ is itself

isomorphic to a polynomial ring in t variables over k and X ′ = At as well. The

blowup map X ′ → X is an isomorphism outside of the closed set {y1 = a1} of X.
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Given a sequence of points {di = (ai1, ai2, . . . , ait)}i≥0 such that ai1 6= aj1 for i 6= j,

we may iterate the blowup construction, producing a union of commutative domains

A ⊆ A0 ⊆ A1 ⊆ A2 ⊆ . . .

where each Ai is isomorphic to a polynomial ring in t variables over k. In this case

we set B =
⋃
Ai and Y = Spec B, and call Y (or B) the infinite blowup of At at the

sequence of points {di}. Explicitly, B = A[{(yj − aij)(y1 − ai1)
−1|2 ≤ j ≤ t, i ≥ 0}].

That there should be some connection between such infinite blowups and the alge-

bras R(ϕ, c) is strongly suggested by the following result (compare Theorem 3.3.12).

Theorem 3.5.3. [2, Theorem 1.5] The infinite blowup B is a noetherian ring if and

only if the set of points {di}≥0 is a critically dense subset of At. �

Now we show the failure of the strong noetherian property for the noetherian

rings R(ϕ, c) explicitly.

Theorem 3.5.4. Let (ϕ, c) ∈ (Aut Ptk) × Ptk satisfy the critical density condition.

There is an affine patch At ⊆ Pt such that {ci}i∈Z ⊆ At. Let B be the infinite blowup

of At at the points {ci}i≥0. Then R = R(ϕ, c) is noetherian, and B is a commutative

noetherian k-algebra which is a UFD such that R⊗k B is not a left noetherian ring.

Proof. By changing coordinates, we may replace ϕ by a conjugate without loss of

generality, so we may assume that when represented as a matrix ϕ is lower trian-

gular. Also, we may multiply this matrix by a nonzero scalar without changing the

automorphism of Pt it represents, and so we also assume that the top left entry of

the matrix is 1.

By assumption the set of points {ci}i∈Z is critically dense in Pt, and R(ϕ, c) is

noetherian. Let X0 be the hyperplane {x0 = 0} of Pt. Since ϕ is upper triangular,
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ϕ(X0) = X0, so if some ci ∈ X0 then {ci}i∈Z ⊆ X0 which contradicts the critical

density condition. So certainly {ci}i∈Z ⊆ At = Pt \X0. Since the top left entry of ϕ

is 1, we may fix homogeneous coordinates for the ci of the form ci = (1 : ai1 : ai2 :

· · · : ait). Let yi = xi/x0, so that k[y1, y2, . . . yt] is the coordinate ring of At. In affine

coordinates, ci = (ai1, ai2, . . . , ait).

If ai1 = aj1 for some i < j, then since ϕ is lower triangular it follows that

ai1 = ak1 for all k ∈ (j − i)Z. Then the hyperplane {ai1x0 − x1 = 0} of Pt contains

infinitely many of the ci, again contradicting the critical density of {ci}i∈Z. So

the scalars {ai1}i∈Z are all distinct, and the infinite blowup B of At at the points

{ci}i≥0 is well defined. The ring B is generated over k[y1, y2, . . . , yt] by the elements

{(yj − aij)(y1 − ai1)
−1 | 2 ≤ j ≤ t, i ≥ 0}. Clearly the points {ci}i≥0 must be

critically dense subset of At, since they are a critically dense subset of Pt. Thus B is

noetherian by Theorem 3.5.3.

The ring B is obtained as a directed union of k-algebras Ai which are each iso-

morphic to a polynomial ring. In each ring Ai the group of units is just k×, and so

this is also the group of units of B. It follows that if z ∈ Ai is an irreducible element

of B, then z is irreducible in Ai. Since B is noetherian, every element of B is a finite

product of irreducibles, and the uniqueness of such a decomposition follows by the

uniqueness in each UFD Ai. Thus B is a UFD.

Fix the two elements f = y1x0 − x1 and g = y2x0 − x2 of UB ∼= B[x0, x1, . . . , xt].

Since f and g are homogeneous of degree 1 in the xi and are not divisible by any

non-unit of B, it is clear that f and g are distinct irreducible elements of UB, and

so in particular gcd(f, g) = 1. Now f(ci) = y1 − ai1 and g(ci) = y2 − ai2, so

Ωi = g(ci)/f(ci) = (y2 − ai2)(y1 − ai1)
−1 ∈ B and thus f(ci)|g(ci) for all i ≥ 0.

Finally, f(ci) = (y1 − ai1) is not in the group of units k× of B. We see that
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all of the hypotheses of Proposition 3.5.2 are satisfied, and so R ⊗k B is not left

noetherian.



CHAPTER IV

Homological Properties

We turn in this chapter to results of a more homological flavor. In particular, we

will prove Theorems 1.5.6—1.5.10 from the introduction. In the preparatory first

section, we begin by discussing some useful notation for some special categories of

modules over the rings S = S(ϕ) and R = R(ϕ, c), and we prove some elementary

results concerning these categories. The purpose of the remainder of the section is to

collect together various needed homological definitions and lemmas, especially about

the properties of Ext and Tor over the rings R and S.

In §4.2 we examine the properties of 2-sided ideals of R, and show that they are

very closely related to the 2-sided ideals of S. Because it is an easy consequence, we

give a complete description of the graded prime spectrum of R in terms of that of S,

although we do not use this result elsewhere in the thesis. A second consequence of

our results on ideals of R is the proof in §4.3 that R is a maximal order in its Goldie

ring of fractions.

In §4.4 we use spectral sequence techniques to show that R satisfies the χ1 condi-

tion but that R fails χi for i ≥ 2. It then follows quickly from the noncommutative

Serre’s finiteness theorem proved by Artin and Zhang that the category R -qgr is not

equivalent to A -qgr for any graded algebra A which satisfies χ2. Next, we discuss the

64



65

notion of cohomological dimension, and show that R -proj has cohomological dimen-

sion at most t. The proof uses another spectral sequence to reduce the calculation of

cohomology in R -proj to a more tractable calculation over the ring S. Last, in §4.6

we give a brief discussion of the notion of Krull dimension, and show that it coincides

with GK-dimension for modules over the ring R. This final section is included for

reference purposes only, since it may be useful for further work; it is not essential to

any other results in the thesis.

4.1 Special subcategories and homological lemmas

Let S = S(ϕ) and R = R(ϕ, c), and assume the critical density condition (Hy-

pothesis 3.3.14), in particular that R is noetherian. First, we introduce some notation

for the subcategories of S -Gr and R -Gr which are generated by the “distinguished”

S-point modules P (ci), which will be useful throughout this chapter.

Definition 4.1.1. (1) Let S -dist be the full subcategory of S -gr consisting of all

S-modules M with a finite S-module filtration whose factors are either torsion or a

shift of P (ci) for some i ∈ Z.

(2) Let R -dist be the full subcategory of R -gr consisting of all R-modules M having

a finite R-module filtration whose factors are either torsion or a shift of the module

RP (ci) for some i ∈ Z.

Note that by Theorem 3.4.5(1),(2), RP (ci) is finitely generated for any i ∈ Z

and so part (2) of the definition makes sense. We also define S -Dist to be the full

subcategory of S -Gr consisting of those modules M such that N ∈ S -dist for every

finitely generated submodule N of M . The subcategory R -Dist of R -Gr is defined

similarly.

The following basic facts are left to the reader; we shall use them without comment
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below.

Lemma 4.1.2. (1) S -dist and S -Dist are Serre subcategories of S -Gr.

(2) R -dist and R -Dist are Serre subcategories of R -Gr.

(3) R(S/R) is in R -Dist (use Corollary 3.3.6). �

The following result helps to clarify the relationship between the special categories

over the two rings.

Lemma 4.1.3. (1) Let SM ∈ S -gr. Then RM ∈ R -dist if and only if SM ∈ S -dist.

(2) Let SM ∈ S -Gr. Then RM ∈ R -Dist if and only if SM ∈ S -Dist.

Proof. (1) Suppose that SM ∈ S -dist. Then it follows directly from Definition 4.1.1

that RM ∈ R -dist. Conversely, suppose that RM ∈ R -dist. Clearly GKR(M) ≤ 1,

so we have GKS(M) ≤ 1 since we can measure GK-dimension using the Hilbert

function. By Lemma 3.1.3, M has a finite filtration over S with cyclic critical factors,

which must in this case be shifts of Sk and S-point modules. Suppose that a shift of

P (d) is one of the factors occurring. Then N = RP (d) ∈ R -dist. By the definition of

R -dist, some tail of N is isomorphic to a shift of some RP (ci) for some i ∈ Z. Using

Lemma 3.1.2, this forces RP (d) ∼= RP (cj) for some j ∈ Z and so by Lemma 3.4.3(4)

we have d = cj. Thus the only point modules which may occur as factors in the

S-filtration of M are shifts of the P (cj) for j ∈ Z and so M ∈ S -dist.

(2) Suppose that SM ∈ S -Dist. Let N be any finitely generated R-submodule

of M . Then SN ∈ S -dist and so SN ∈ R -dist by part (1), and then N ∈ R -dist.

Thus RM ∈ R -Dist. On the other hand, suppose that RM ∈ R -Dist. Let L be

a finitely generated S-submodule of M . Certainly RS 6∈ R -Dist, so necessarily

GKS(L) < GK(S) = t + 1. Then it is clear from a finite filtration of L by cyclic

S-modules and Lemma 3.3.16(2) that RL is finitely generated. So RL ∈ R -dist and
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then SL ∈ S -dist by part (1). We conclude that SM ∈ S -Dist.

An important property of the distinguished point modules P (ci) is that they have

zero annihilator.

Lemma 4.1.4. (1) If M ∈ R -Dist, then either RM is torsion or else annRM = 0.

(2) If N ∈ S -Dist, then either SN is torsion or else annS N = 0.

Proof. Consider the S-point module P (ci) for some i ∈ Z. By Lemma 3.1.2(1),

P (ci) has point sequence ci, ci−1, ci−2, . . . . Then annS P (ci) = ∩∞
j=0mci−j

, and by the

critical density of the points {ci} we conclude that annS P (ci) = 0 = annR P (ci).

Now both parts follow quickly from the definitions of the categories R -Dist and

S -Dist.

In the rest of this section, we gather some definitions and lemmas concerning

homological algebra over the rings R and S.

Let A be a connected N-graded k-algebra, finitely generated in degree 1, and

let k = (A/A≥1). Recall the χ conditions from Definition 1.5.1: A satisfies χi if

dimk Extj(k,M) < ∞ for all M ∈ A -gr and all 0 ≤ j ≤ i, and A satisfies χ if A

satisfies χi for all i ≥ 0. In addition, we will say that χi(M) holds for a particular

module M ∈ A -Gr if ExtjA(k,M) < ∞ for 0 ≤ j ≤ i. If M ∈ A -gr, the grade of M

is the number j(M) = min{i|ExtiA(M,A) 6= 0}. We say that A is Cohen-Macaulay

if j(M) + GK(M) = GK(A) for all M ∈ A -gr.

The ring S obtains many nice homological properties simply because it is a Zhang

twist of a commutative polynomial ring.

Lemma 4.1.5. (1) S has global dimension t+ 1.

(2) S is Cohen-Macaulay.
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(3) S is Artin-Schelter regular (in the sense of Definition 1.3.2).

(4) S satisfies χ.

Proof. All of these properties are standard for the polynomial ring U . Properties

(1)-(3) follow for the Zhang twist S of U by [43, Propositions 5.7, 5.11]. Then since

S is Artin-Schelter regular it satisfies χ [8, Theorem 8.1].

For an N-graded algebra A and M,N ∈ A -gr, recall the definition of Exti(M,N)

from §2.1. If L is a Z-graded right A-module, then the k-space TorAi (L,N) has a

natural Z-grading as well. We emphasize this fact by writing TorAi (L,N) for this

vector space. Let us gather here some elementary facts about Ext and Tor.

Lemma 4.1.6. [8, Propositions 2.4, 3.1] Let A be a finitely generated connected N-

graded k-algebra. Let M be a graded left A-module, let L be a graded right A-module,

and let {Nα} be an arbitrary indexed set of graded left A-modules.

(1) ExtiA(M,
⊕

αNα) ∼=
⊕

α ExtiA(M,Nα).

(2) TorAi (L,
⊕

αNα) ∼=
⊕

α TorAi (L,Nα), and similarly in the other coordinate.

(3) If A is noetherian, L is finitely generated, and M is bounded, then TorAi (L,M)

is also bounded.

(4) If L is a left bounded module, then the left bound of TorAi (L,A/A≥n) tends to ∞

with n.

(5) If N is left or right bounded, the same is true of Exti(M,N) for all i ≥ 0. �

The next proposition shows that the critical density of the set {ci}i∈Z, besides

characterizing the noetherian property for R, also has implications for the homolog-

ical properties of the S-point modules P (ci). As usual, we identify the graded left

ideals of S and the graded ideals of U .
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Proposition 4.1.7. Assume the critical density condition, and let N ∈ S -gr.

(1) dimk ExtpS(P (ci), N) <∞ for 0 ≤ p ≤ t− 1 and any i ∈ Z.

(2) Let M ∈ S -dist. Then dimk ExtpS(M,N) <∞ for 0 ≤ p ≤ t− 1.

Proof. (1) Since N is finitely generated, it is easy to see that E = ExtpS(P (ci), N)

is finitely graded, in other words each graded piece is finite dimensional over k. So

it is enough to show that E is bounded. Note that E is automatically left bounded

since N is, by Lemma 4.1.6(5). It remains to show that E is right bounded. Using

a finite filtration of N by cyclic modules, one reduces quickly to the case where N is

cyclic, say N = S/I.

In case I = 0, E = ExtpS(P (ci), S) = 0 for 0 ≤ p ≤ t− 1 by the Cohen-Macaulay

property of S (Lemma 4.1.5(2)).

Now assume that I 6= 0. By Lemma 2.3.3(3), we have for each n ≥ 0 the k-space

isomorphism

ExtpS(S/mci , S/I)n
∼= ExtpU(U/mci, U/φ

−n(I))n.

Now φ−n(I) ⊆ mci, or equivalently I ⊆ mci+n
, can hold for at most finitely many n,

since the points {ci}i∈Z are critically dense. Thus for n � 0 we have φ−n(I) 6⊆ mci ,

and the module U/(φ−n(I)+mci) is bounded. By Corollary 2.4.8, there is some fixed

d ≥ 0 such that ExtpU(U/mci , U/φ
−n(I))n = 0 as long as n ≥ d. We conclude that

ExtpS(S/mci, S/I)n = 0 for n� 0, as we wish.

(2) Since M ∈ S -dist, we may choose a finite filtration of M with factors which

are shifts of the point modules P (ci) or Sk. Since S satisfies χ by Lemma 4.1.5(4),

dimk ExtpS(Sk,N) <∞ for all p ≥ 0, and now the statement follows by part (1).

To study homological algebra over R, we will generally try to reduce to calculations

over the ring S. In particular, we will often use the following convergent spectral
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sequence, which is valid for any graded modules RM and SN [31, Equation (2.2)]:

(4.1.8) ExtpS(TorRq (S,M), N) ⇒
p

Extp+qR (M,N).

We also note for reference the 5-term exact sequence arising from this spectral se-

quence [27, 11.2]:

(4.1.9) 0 → Ext1
S(S ⊗RM,N) → Ext1

R(M,N) → HomS(TorR1 (S,M), N)

→ Ext2
S(S ⊗RM,N) → Ext2

R(M,N).

In order to make effective use of the spectral sequence, we need some information

about Tor.

Lemma 4.1.10. Fix some n ≥ 0 and let M = R/R≥n.

(1) As left R-modules, TorRq (S,M) ∼= TorRq (S/R,M) for any q ≥ 1.

(2) TorRq (S,M) ∈ S -dist for q ≥ 0.

Proof. (1) For q ≥ 2, the desired isomorphism follows immediately from the long

exact sequence in TorRi (−,M) associated to the short exact sequence of R-bimodules

0 → R → S → S/R → 0. For the case q = 1, consider the end of this long exact

sequence of left R-modules:

. . .→ 0 → Tor1(S,M) → Tor1(S/R,M)
θ→M

ψ→ S ⊗R M → S/R ⊗M → 0.

Now S⊗RM ∼= S/SR≥n, and the map ψ is just the natural map R/R≥n → S/SR≥n.

It is clear that ψ is an injection, so θ is the zero map and Tor1(S,M) ∼= Tor1(S/R,M).

(2) When q = 0, we have that TorR0 (S,M) = S ⊗R M ∼= S/SR≥n. Note that

S/R≥n ∈ R -Dist, since both S/R and R/R≥n are in R -Dist (see Lemma 4.1.2). Then

the image S/SR≥n of S/R≥n is in R -Dist also. If instead q ≥ 1, then TorRq (S,M) ∼=

TorRq (S/R,M) by part (1). Computing N = TorRq (S/R,M) using a free resolution of

M , we see thatN is a subfactor of some direct sum of copies of (S/R), soN ∈ R -Dist.
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For all q ≥ 0 we have TorRq (S,M) ∈ R -Dist, so TorRq (S,M) ∈ S -Dist by

Lemma 4.1.3. Then computing TorRq (S,M) using a resolution of M by free R-

modules of finite rank, it follows that actually TorRq (S,M) ∈ S -dist.

One easy consequence of the spectral sequence is the following useful fact.

Lemma 4.1.11. Ext1
R(Rk, R) = 0.

Proof. Consider the long exact sequence in ExtR(k,−) associated to the short exact

sequence 0 → R → S → S/R → 0:

(4.1.12) . . .→ HomR(k, S/R) → Ext1
R(k, R) → Ext1

R(k, S) → . . .

Now R(S/R) is torsionfree, since it is isomorphic to a direct sum of point modules

by Corollary 3.3.6(2). Thus HomR(k, S/R) = 0.

To analyze the group Ext1
R(k, S), we use the beginning of the 5-term exact se-

quence (4.1.9) for M = Rk and N = S:

(4.1.13) 0 −→ Ext1
S(S ⊗R k, S) −→ Ext1

R(k, S) −→ HomS(TorR1 (S, k), S) −→ . . .

Now by Lemma 4.1.10(2), TorRi (S, k) is in S -dist for all i ≥ 0; in particular,

GKS(S ⊗R k) ≤ 1 and GKS(TorR1 (S, k)) ≤ 1. Then Ext1
S(S ⊗R k, S) = 0 by the

Cohen-Macaulay property of S (Lemma 4.1.5(2)) and HomS(TorR1 (S, k), S) = 0 since

S is a domain with GK(S) = t + 1 > 1. Thus by (4.1.13) Ext1
R(k, S) = 0, and by

(4.1.12) Ext1
R(k, R) = 0 as well.

4.2 Two-sided ideals and prime ideals

In the present section, we will examine the 2-sided ideals of R = R(ϕ, c), assuming

as always the critical density condition on (ϕ, c). We see first that the graded ideal

structure of R is strongly controlled by that of S = S(ϕ).
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Proposition 4.2.1. Let I be a graded ideal of R. Then dimk(SIS ∩ R)/I <∞.

Proof. If I = 0 the result is obvious, so we may assume that I 6= 0. As a left

R-module, SI/I is a surjective image of some direct sum of copies of R(S/R). By

Lemma 4.1.2(3) we conclude that (SI∩R)/I ∈ R -Dist. Since (SI∩R)/I is killed on

the left by I, Lemma 4.1.4 implies that (SI ∩R)/I is torsion, so dimk(SI ∩R)/I <

∞. A similar argument shows that dimk(SIS ∩ R)/(IS ∩ R) < ∞. Then using

Lemma 3.2.2(1), the same property must hold on the right side, and so dimk(SIS ∩

R)/(SI ∩R) <∞. Now altogether we have dimk(SIS ∩ R)/I <∞.

We also need a related lemma.

Lemma 4.2.2. Let I be a graded ideal of R. Then SIS/SI ∈ S -dist.

Proof. By Lemma 4.1.3, it will be enough to show that SIS/SI ∈ R -Dist. By

Proposition 4.2.1, (SIS ∩ R)/I is a torsion R-module, so we need only show that

M = SIS/(SIS ∩ R) ∈ R -Dist. But given any f ∈ (SIS)m, the left ideal J =

(∩mi=1mc−i
) ∩ R of R satisfies Jf ∈ SIS ∩ R, by Theorem 3.2.3. The module R/J

embeds in S/(∩mi=1mc−i
), which is clearly in S -dist, so R/J ∈ R -dist by Lemma 4.1.3.

Thus every cyclic submodule of M is in R -dist, so we conclude that M ∈ R -Dist.

We may now classify the graded prime ideals of R = R(ϕ, c) in terms of the graded

primes of S = S(ϕ).

Theorem 4.2.3. Assume the critical density condition. The graded prime ideals of

R are exactly the ideals of the form Q ∩ R for a graded prime Q of S.

Proof. Let P be a graded prime ideal of R, and set R = R/P . If GK(R) = 0, then

clearly P = R≥1 and P = Q ∩ R for Q = S≥1. Assume then that GK(R) ≥ 1. By

Proposition 4.2.1, there is a proper graded ideal Q = SPS of S such that (Q∩R)/P
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is torsion over R. The noetherian prime ring R can not have a nonzero torsion ideal,

so Q∩R = P . Now enlarge Q if necessary so that Q is maximal among graded ideals

of S with the property that Q ∩ R = P . If I, J are ideals of S satisfying I ⊇ Q,

J ⊇ Q and IJ ⊆ Q, then (I ∩ R)(J ∩ R) ⊆ (Q ∩ R) = P , so either I ∩ R = P or

J ∩ R = P . Thus either I = Q or J = Q and Q is a prime ideal of S.

Conversely, letQ be a graded prime of S and let S = S/Q and P = Q∩R. If Q = 0

or Q = S≥1, then obviously P is a prime ideal of R. Thus we may assume that Q 6= 0

and that GK(S) ≥ 1. Also, since RR ⊆ RS is an essential extension by Lemma 3.2.5,

we can assume that P 6= 0. Suppose that I, J are ideals of R with I ⊇ P , J ⊇ P , and

IJ ⊆ P . Let M = SISJS/SIJS. Then SM is a homomorphic image of a direct sum

of copies of SIS/SI, so M ∈ S -dist by Lemma 4.2.2. Since 0 6= SIJS ⊆ annSM ,

SM is torsion by Lemma 4.1.4(2). Then SISJS/(SISJS ∩Q) ∼= (SISJS+Q)/Q is

also torsion over S. But S may not have any nonzero torsion ideals, so SISJS ⊆ Q.

Finally, either SIS ⊆ Q or SJS ⊆ Q, and so either I ⊆ P or J ⊆ P , and P is

prime.

Finally, we note that it is easy to see exactly what the graded prime ideals of S(ϕ)

are.

Lemma 4.2.4. Let S = S(ϕ), and identify the homogeneous left ideals of S with the

homogeneous ideals of U . Then a homogeneous left ideal I of S is a prime ideal if

and only if I =
⋂n−1
i=0 φ

i(P ) for some homogeneous prime P of U of finite order n

under φ.

Proof. Recall the definition of saturation for graded ideals of U , from §2.4. First we

claim that if I is saturated, then I is a 2-sided ideal of S if and only if φ(I) = I.

This follows from [3, Lemma 4.4] since S may be described as a twisted homogeneous
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coordinate ring, but it is also easy to see directly: if IS = I, then in U we have in

particular that φ(I) ◦U1 ⊆ I. Then (φ(I) + I)/I is a torsion U -module, so since I is

saturated, φ(I) ⊆ I. Since U is finite dimensional in each degree this forces φ(I) = I.

Conversely, if φ(I) = I then clearly IS = IU = I.

Now suppose that I is a graded prime ideal of S. Obviously S≥1 = U≥1 is the

unique maximal graded prime of S and it has the correct form, so assume that

I ( S≥1. Then S/I has no nonzero torsion ideals, so I is saturated, and thus

φ(I) = I. We claim that I is a radical ideal of U . Let J =
√
I. Then J is

homogeneous and φ(J) = J . Thus J/I is a nilpotent ideal of the prime ring S/I,

and so J = I, proving the claim. Now if P1, . . . Pm are the distinct associated

homogeneous primes of I in U , then the action of φ must permute these primes. If

O1, . . . On are the orbits of this action, then setting Ji = ∩{P | P ∈ Oi}, the Ji are

homogeneous φ-invariant ideals of U with Ji ⊇ I and J1◦J2◦· · ·◦Jn = J1J2 . . . Jn ⊆ I.

Since I is prime in S, n = 1 and so I is the intersection of a single orbit of primes.

This forces I =
⋂n−1
i=0 φ

i(P ) for some graded prime P of U of order n under φ.

Conversely, let I =
⋂n−1
i=0 φ

i(P ) for some homogeneous prime P of U of finite

order n under φ. If P = U≥1 then I = S≥1 is certainly prime, so we may assume that

P ( U≥1. Then I is saturated. Suppose that JK ⊆ I for ideals J ⊇ I and K ⊇ I of

S. We may replace J,K by their saturations, so by the initial claim of the proof, J

and K are invariant under φ; since I is saturated, we still have JK ⊆ I. This means

that J ◦K ⊆ I ⊆ P in U . Since P is prime in U , either J ⊆ P or K ⊆ P . If J ⊆ P ,

then since J is φ-invariant, J ⊆ ⋂n−1
i=0 φ

i(P ) = I. Similarly, if K ⊆ P then K ⊆ I.

Thus I is a prime ideal of S.
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4.3 The maximal order property

Let A be a noetherian domain with Goldie quotient ring Q. We say A is a maximal

order in Q if given any ring T with A ⊆ T ⊆ Q and nonzero elements a, b of A with

aTb ⊆ A, we have T = A. If A is commutative, then A is a maximal order if and

only if A is integrally closed in its fraction field [23, Proposition 5.1.3].

We are interested in an equivalent formulation of the maximal order property. For

any left ideal I of A, we define Or(I) = {q ∈ Q|Iq ⊆ I} and Ol(I) = {q ∈ Q|qI ⊆ I}.

Then A is a maximal order if and only if Or(I) = A = Ol(I) for all nonzero ideals I of

A [23, Proposition 5.1.4]. If A is an N-graded algebra with a graded ring of fractions

D, then for any homogeneous ideal I ofA we may also define Og
r(I) = {q ∈ D|Iq ⊆ I}

and Og
l (I) = {q ∈ D|qI ⊆ I}. In the graded case we have the following criterion for

the maximal order property.

Lemma 4.3.1. Let A be an N-graded noetherian domain which has a graded quotient

ring D and Goldie quotient ring Q. Then A is a maximal order if and only if

Og
r(I) = A = Og

l (I) holds for all homogeneous nonzero ideals I of A.

This result is stated in [35, Lemma 2], but since we had trouble tracking down

the reference given there we will supply a brief proof here.

Proof. We may write D ∼= T [z, z−1; σ] for some division ring T and automorphism

σ of T (see §2.1). Then since T is a maximal order, it follows by [22, Proposi-

tions IV.2.1, V.2.3] that D is a maximal order in Q.

Assume that Og
r(J) = A = Og

l (J) for all homogeneous ideals J of A. Let I be any

ideal of A, and let q ∈ Or(I). Then DI is a 2-sided ideal of D [17, Theorem 9.20],

and also q ∈ Or(DI). Since D is a maximal order in Q, this forces q ∈ D.

Given any d =
∑
di ∈ D where di ∈ Di, let n be maximal such that dn 6= 0 and
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set d̃ = dn. Let Ĩ be the 2-sided homogeneous ideal generated by ã for all a ∈ I.

Write q =
∑n

i=m di; then since Iq ⊆ I, we have Ĩdn ⊆ Ĩ and so dn ∈ Og
r(Ĩ) = A.

Then q − dn ∈ Or(I). By induction on n−m we get that q − dn ∈ A and so q ∈ A.

Thus Or(I) = A, and an analogous argument gives Ol(I) = A, so A is a maximal

order. The opposite implication is trivial.

Now let S = S(ϕ) and R = R(ϕ, c) and assume the critical density condition.

Our next goal is to show that R = R(ϕ, c) is a maximal order. First, we note that

the ring S has this property.

Lemma 4.3.2. S = S(ϕ) is a maximal order.

Proof. By [43, Theorem 5.11], S is ungraded Cohen-Macaulay and Auslander-regular,

since U has both properties; also, since S is graded it is trivially stably free. By [28,

Theorem 2.10], any ring satisfying these three properties is a maximal order.

Recall that R and S have the same graded quotient ringD (Lemma 3.2.5). For any

graded left R-submodules M,N of D, we identify HomR(M,N) with {d ∈ D |Md ⊆

N}. Similarly, if M,N are graded left S-submodules of D we identify HomS(M,N)

and {d ∈ D |Md ⊆ N}.

Proposition 4.3.3. Let I be a nonzero homogeneous ideal of R. Then Og
l (I) ⊆ S

and Og
r(I) ⊆ S.

Proof. Consider Og
r(I) for some nonzero homogeneous ideal I of R. We have that

Og
r (I) = {q ∈ D|Iq ⊆ I} ⊆ {q ∈ D|SIq ⊆ SI} = HomS(SSI, SSI).

We will show that HomS(SI, SI) ⊆ S. Since S is a maximal order by Lemma 4.3.2,

we know that Og
r(SIS) = HomS(SIS, SIS) = S. Set M = SIS/SI, and note that

by Lemma 4.2.2, M ∈ S -dist.



77

We have the following long exact sequence in Ext:

0 → HomS(M,SIS) → HomS(SIS, SIS) → HomS(SI, SIS)

→ Ext1
S(M,SIS) → . . .

Now HomS(M,SIS) = 0, since S is a domain with GK(S) = t + 1 ≥ 3 and

GK(M) ≤ 1. Also, dimk Ext1
S(M,SIS) < ∞, by Proposition 4.1.7(2). We see that

Hom(SI, SIS) is a right S-submodule of D which is an essential finite-dimensional

extension of HomS(SIS, SIS) = S. Since Ext1
S(kS, SS) = 0 (for example, by a

right-sided version of Lemma 4.1.5(2)), S has no nontrivial finite dimensional ex-

tensions and so it must be that HomS(SI, SIS) = S. Finally, HomS(SI, SI) ⊆

HomS(SI, SIS) = S and so Og
r(I) ⊆ S.

The proof that Og
l (I) ⊆ S follows by applying the same argument in the extension

of rings Rop ⊆ Sop, which is valid by Lemma 3.2.2(1).

Now we may complete the proof that R is a maximal order.

Theorem 4.3.4. Assume the critical density condition, so that R is noetherian.

Then R is a maximal order.

Proof. Let I be any nonzero homogeneous ideal of R. Then HomR(RI, RI) = Og
r(I) ⊆

S, by Proposition 4.3.3. Set M = (HomR(I, I))/R; then RM is a submodule of

R(S/R), so M ∈ R -Dist by Lemma 4.1.2. Since IM = 0, Proposition 4.1.4(1)

implies that M is a torsion module. But Ext1
R(k, R) = 0 by Lemma 4.1.11, and so R

may not have any nontrivial torsion extensions. Since R ⊆ HomR(I, I) is an essential

extension, this forces Og
r(I) = Hom(I, I) = R. Applying the same argument in Rop,

we get Og
l (I) = R as well. Thus R is a maximal order by Lemma 4.3.1.
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4.4 The χ condition and R -proj

We begin this section by discussing some definitions from the theory of noncom-

mutative projective schemes which we have not needed until now. See also [8] for

more details.

Let A be a noetherian N-graded ring which is finitely generated in degree 1.

Recall from §1.2 that the noncommutative projective scheme A -proj is defined to be

the ordered pair (A -qgr,A), where A -qgr is the quotient category A -gr /A -tors as

defined in §2.1, and A, the distinguished object, is the image of AA in A -qgr. We

write A -proj ∼= B -proj if there is an equivalence of categories A -qgr ∼ B -qgr under

which the distinguished objects correspond. The shift functor M 7→ M [1], which is

an autoequivalence of the category A -Gr, descends naturally to an autoequivalence

of A -Qgr, for which we use the same notation. For M,N ∈ A -Qgr we define

Exti(M,N ) =

∞⊕

i=−∞

Exti(M,N [i]).

Cohomology groups are defined for A -Proj by setting Hi
A(N ) = Exti(A,N ) for

any N ∈ A -Qgr, where Ext is calculated in the category A -Qgr. We also define the

graded cohomology groups Hi
A(N ) = Exti(A,N ). The section functor ω (see §2.1)

may also be described using cohomology as ω(M) = H0(M) for all M ∈ A -Qgr.

In this section, we will analyze the χ conditions (see §4.1) for R = R(ϕ, c), as-

suming the critical density condition throughout. The reader may easily prove the

following simple facts.

Lemma 4.4.1. Let 0 →M ′ →M →M ′′ → 0 be an exact sequence in R -gr, and let

N ∈ R -gr.

(1) If χ1(M
′) and χ1(M

′′) hold then χ1(M) holds.

(2) If χ1(M) holds then χ1(M
′) holds.
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(3) If dimkN <∞ then χ1(N) holds. �

To prove χ1 for R we will reduce to the case of S-modules.

Proposition 4.4.2. Suppose that N ∈ S -gr. Then χ1(RN) holds.

Proof. Consider the first 3 terms of the 5-term exact sequence (4.1.9) for M = Rk:

0 −→ Ext1
S(S ⊗R k,N) −→ Ext1

R(k,N) −→ HomS(TorR1 (S, k), N) −→ . . .

Now TorRi (S, k) is in S -dist for any i ≥ 0, by Lemma 4.1.10(2). Then by Propo-

sition 4.1.7(2), we conclude that dimk ExtjS(TorRi (S, k)), N) < ∞ for j = 0, 1 and

i ≥ 0. Thus dimk Ext1
R(k,N) <∞.

We now prove Theorem 1.5.6, which together with Theorem 4.3.4 answers Ques-

tions 1.5.5 and 1.5.8 from the introduction.

Theorem 4.4.3. Assume the critical density condition and let R = R(ϕ, c).

(1) R satisfies χ1.

(2) Ext2
R(k, R) is not bounded, and χi fails for all i ≥ 2.

Proof. (1) By Lemma 4.4.1(1) and induction it is enough to show that χ1(M) holds

for all graded cyclic R-modules M .

Let R/I be an arbitrary graded cyclic left R-module. If I = 0, then χ1(RR) holds

by Lemma 4.1.11. Assume then that I 6= 0. Consider the exact sequence (3.3.15).

Now χ1(R(S/SI)) holds by Proposition 4.4.2. By Lemma 3.3.16(1), both (SI ∩R)/I

and S/(R+SI) have finite filtrations with factors which are either torsion or shifted

R-point modules with a compatible S-module structure. Then χ1((SI ∩ R)/I) and

χ1(S/(R+SI)) hold, by Proposition 4.4.2 and Lemma 4.4.1(1),(3). Finally, applying

Lemma 4.4.1(1),(2) to (3.3.15) we get that χ1(R/I) holds.
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(2) Consider the long exact sequence in ExtR(k,−) that arises from the short

exact sequence of R-modules 0 → R → S → S/R→ 0:

(4.4.4) . . .→ Ext1
R(k, S) → Ext1

R(k, S/R) → Ext2
R(k, R) → . . .

Now Ext1
R(k, S) = 0, as in the proof of Lemma 4.1.11. On the other hand,

Ext1
R(k, S/R) ∼=

∞⊕

i=1

Ext1
R(k, P (c−1))[−i]

by Corollary 3.3.6(2), since Ext commutes with direct sums in the second coor-

dinate by Lemma 4.1.6(1). By Theorem 3.4.5(2), it is clear that the point mod-

ule P (c−1) has a nontrivial extension by k[1], since any point module P (c0, e) de-

fined there satisfies (P (c0, e)[1])≥0
∼= RP (c−1). Thus Ext1

R(k, P (c−1)) 6= 0, and so

⊕∞
i=1 Ext1

R(k, P (c−1))[−i] ∼= Ext1
R(k, S/R) is not right bounded. Then by the ex-

act sequence (4.4.4), Ext2
R(k, R) is also not right bounded. In particular, we have

dimk Ext2
R(k, R) = ∞ and χi fails for R for all i ≥ 2 by definition.

We see next that the failure of χi for R for i ≥ 2 is reflected in the cohomology of

R -proj. Recall the noncommutative version of Serre’s finiteness theorem which was

proved by Artin and Zhang (Theorem 1.5.4). We give a slightly stronger restatement

here which better suits our purposes.

Theorem 4.4.5. Let A be a left noetherian finitely N-graded algebra which satisfies

χ1. Then A satisfies χi for some i ≥ 2 if and only if the following two conditions

hold:

(1) dimk Hj(N ) <∞ for all 0 ≤ j < i and all N ∈ A -qgr.

(2) Hj(N ) is right bounded for all 1 ≤ j < i and all N ∈ A -qgr.

Proof. This follows immediately from the proof of [8, Theorem 7.4].
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Lemma 4.4.6. Let A be a left noetherian finitely N-graded algebra satisfying χi.

Then dimk Extj(M,N ) <∞ for 0 ≤ j < i and for all M,N ∈ A -qgr.

Proof. Let A = π(A). Since any M ∈ A -gr is an image of some finite sum of shifts

of A, in A -qgr there is an exact sequence

0 → M′ → F → M → 0

where we have F =
⊕n

i=1 A[di] for some integers di ∈ Z. Then Extj(F ,N ) =

⊕n
i=1 Extj(A,N [−di]) =

⊕n
i=1 Hj(N [−di]) and so dimk Extj(F ,N ) < ∞ for all

0 ≤ j < i by Theorem 4.4.5.

We induct on j. If j = 0 then there is an exact sequence 0 → Hom(M,N ) →

Hom(F ,N ) from which it follows that dimk Hom(M,N ) < ∞. For 0 < j < i, we

consider the long exact sequence

. . .→ Extj−1(M′,N ) → Extj(M,N ) → Extj(F ,N ) . . .

Since dimk Extj−1(M′,N ) <∞ by the induction hypothesis, dimk Extj(M,N ) <∞

as well. This completes the induction step and the proof.

We can make the failure of the Serre’s finiteness theorem for R -proj explicit.

Lemma 4.4.7. Let R = π(R) ∈ R -qgr be the distinguished object of R -proj. Then

dimk H1(R) = ∞.

Proof. Set S = π(S) ∈ R -Qgr. The exact sequence 0 → R → S → S/R → 0

descends to an exact sequence 0 → R → S → S/R → 0 in R -qgr. For M ∈

R -Qgr, the cohomology H0(M) may be identified with the zeroeth graded piece of

the module ω(M), where ω is the section functor. Recall also that for torsionfree

M ∈ A -Gr, ωπ(M) is the largest essential extension of M by a torsion module.
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Since Ext1
R(k, S) = 0 by the proof of Lemma 4.1.11, RS has no nontrivial torsion

extensions and so ω(S) = S. In particular, dimk H0(S) = dimk S0 = 1. On the other

hand, S/R =
⊕∞

i=1 P (c−1)[−i] is an infinite direct sum of shifted R-point modules

by Corollary 3.3.6(2). For each i ≥ 0, we may choose some R-point module P (ci, ei)

by Theorem 3.4.5(2) which satisfies P (ci, ei)≥i+1
∼= P (c−1)[−i − 1]. Then M =

⊕∞
i=0 P (ci, ei) is an essential extension of S/R by a torsion module, so M ⊆ ω(S/R)

and it follows that dimk H0(S/R) ≥ dimkM0 = ∞. Now the long exact sequence in

cohomology forces dimk H1(R) = ∞ as well.

The following result, which proves Theorem 1.5.7 from the introduction, shows

that the category R -qgr is necessarily something quite different from any of the

standard examples of noncommutative schemes.

Theorem 4.4.8. Let R = R(ϕ, c) for (ϕ, c) satisfying the critical density condition.

(1) Suppose that A is a left noetherian finitely N-graded k-algebra which satisfies χ2.

Then the categories A -qgr and R -qgr are not equivalent.

(2) R -qgr is not equivalent to cohX for any commutative projective scheme X.

Proof. (1) The proof is immediate from Lemmas 4.4.6 and 4.4.7.

(2) This follows from part (1) and the usual commutative Serre’s theorem (Theo-

rem 1.2.1).

4.5 Cohomological dimension

In this section, we study the behavior of cohomology in R -proj further. In par-

ticular, we will show that R has finite cohomological dimension. Let us recall the

definition:

Definition 4.5.1. Let A be a connected finitely generated N-graded algebra. The
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cohomological dimension of A -proj is defined to be

cd(A -proj) = max{i | Hi(N ) 6= 0 for some N ∈ A -qgr}

if this number is finite; otherwise we set cd(A -proj) = ∞.

We remark that it is not known if there exists any graded algebra A such that

cd(A -proj) = ∞.

It is also useful to define the cohomological dimension of an single object N ∈

A -Qgr by cdA(N ) = max{i | Hi(N ) 6= 0}. Let us note how the cohomological

dimension of objects in A -Qgr behaves with respect to exact sequences.

Lemma 4.5.2. Let 0 → N ′ → N → N ′′ −→ 0 be a short exact sequence in A -Qgr,

with cd(N ′) <∞, cd(N ) <∞, and cd(N ′′) <∞. Then

(1) cd(N ) ≤ max(cd(N ′), cd(N ′′)).

(2) cd(N ′′) ≤ max(cd(N ′), cd(N )).

(3) cd(N ′) ≤ max(cd(N ), cd(N ′′)) + 1.

Proof. All three assertions quickly follow from the long exact sequence in cohomology

associated to the given short exact sequence.

For i ≥ 1, the graded cohomology groups in A -Proj may be expressed in terms

of a kind of local cohomology over the ring A, as in the commutative case.

Lemma 4.5.3. [8, Proposition 7.2(2)] Let N = π(N) ∈ A -Qgr for some N ∈ A -Gr.

Then as k-spaces,

Hi
A(N ) ∼= lim

n→∞
Exti+1

A (A/A≥n, N)

for i ≥ 1. �

Now let S = S(ϕ) and R = R(ϕ, c), and assume the critical density condition as

usual. It is easy to compute the cohomological dimension of S -proj:
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Lemma 4.5.4. cd(S -proj) = GK(S) − 1 = t.

Proof. Since S is AS-regular by Lemma 4.1.5(3), this follows immediately from [8,

Theorem 8.1].

We also have the following version of Grothendieck’s vanishing theorem.

Lemma 4.5.5. Let N ∈ S -gr. Then Hi
S(π(N)) = 0 for i ≥ GKS(N).

Proof. The equivalence of categories S -gr ∼ U -gr (see §2.3) obviously sends torsion

objects to torsion objects, and so it descends to an isomorphism S -proj ∼ U -proj.

Thus it is enough to prove that Hi
U(π(M)) = 0 for i ≥ GKU(M) and all M ∈ U -gr.

If GK(M) = 0 the statement is trivial since π(M) = 0, so assume that GK(M) ≥

1. Now for i ≥ 1, we can express Hi
U(π(M)) in terms of local cohomology, by

Lemma 4.5.3: Hi
U(π(M)) = limn→∞ Exti+1

U (U/U≥n,M). By Grothendieck’s vanish-

ing theorem [13, 6.1.2], limn→∞ ExtjU(U/U≥n,M) = 0 for j > GK(M), so the result

follows.

The main machinery we will use to study the cohomological dimension of R is

the next proposition, which reduces the calculation of the cohomology H i
R(π(N)) for

N ∈ S -Gr to a homological calculation over the ring S only. First we need some

technical lemmas.

Lemma 4.5.6. For any N ∈ S -Gr there is a convergent spectral sequence of the

form

Epq
2 = lim

n→∞
ExtpS(TorRq (S,R/R≥n), N) ⇒

p
lim
n→∞

Extp+qR (R/R≥n, N).

Proof. Consider the spectral sequence (4.1.8) for arbitrary RM ∈ R -Gr:

ExtpS(TorRq (S,M), N) ⇒
p

Extp+qR (M,N).
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Let C be the category of all N-indexed directed systems of modules in R -Gr of the

form

. . .→Mn → . . .→M1 →M0.

Let D be the analogous category of directed systems of modules in S -Gr. Both

of these categories have enough projectives and injectives. For example, if P is a

projective object of R -Gr, then any object in C of the form

(4.5.7) . . .→ 0 → 0 → 0 → P
∼=→ P

∼=→ . . .
∼=→ P

is projective, and clearly every object in C is an image of a direct sum of objects of

this form. See [41, Exercises 2.3.7, 2.3.8] for more details. The functor S ⊗R − :

R -Gr → S -Gr extends to a functor G : C → D. We also have a functor F : D → Ab

defined by {Ln}n∈N 7→ limn→∞ HomS(Ln, N), where Ab is the category of abelian

groups. It is easy to see that G is right exact and F is left exact. Finally, G sends

any direct sum of objects in C of the form in (4.5.7) to a projective object in D.

Then corresponding to the composition of functors F ◦G is a Grothendieck spectral

sequence (see [27, Theorem 11.40])

Ep,q
2 = RpF (LqG(M.)) ⇒

p
Rp+qFG(M.)

which unravels to the spectral sequence required by the lemma when we take Mn =

R/R≥n for all n ≥ 0.

Lemma 4.5.8. For any n ≥ 0 and N ∈ S -Gr, ExtiS(S≥n/SR≥n, N) = 0 for i > t.

Proof. Fix n ≥ 0. If J = (∩n−1
i=0 mci) ⊆ U , then by Lemma 2.5.8, J is generated in de-

grees ≤ n and so using Theorem 3.2.3 we may identify SR≥n and J≥n. There is a nat-

ural injection of U -modules U≥n/J≥n → ⊕n−1
i=0 (U/mci)≥n, which must be an isomor-

phism since both sides have the same Hilbert function by Lemma 2.5.6. Then by the
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equivalence of categories between U -gr and S -gr it follows that S≥n/SR≥n is a direct

sum of shifted S-point modules. Thus we reduce to showing that ExtiS(M,N) = 0

for i > t when M is a point module over S. But since point modules over U have

projective dimension t by the Auslander-Buchsbaum formula ([16, Theorem 19.9]),

the same is true of point modules over S by the equivalence of categories. The result

follows.

Proposition 4.5.9. Let N ∈ S -Gr.

(1) As graded vector spaces, for all m ≥ 1 we have

Hm
R (π(N)) ∼= lim

n→∞
Extm+1

S (S/SR≥n, N).

(2) Hi
R(π(N)) ∼= Hi

S(π(N)) for all i ≥ t + 1. In particular, cdR(π(N)) ≤ t.

(3) If Ht
S(π(N)) = 0 then Ht

R(π(N)) = 0.

Proof. (1) We use the spectral sequence of Lemma 4.5.6:

Epq
2 = lim

n→∞
ExtpS(TorRq (S,R/R≥n), N) ⇒

p
lim
n→∞

Extp+qR (R/R≥n, N).

Our goal is to show that Epq
2 = 0 for any pair of indices p, q with q ≥ 1.

Fix q ≥ 1. For fixed n ≥ 0, we claim first that there is some n′ ≥ n such that

the natural map ψ1 : TorRq (S,R/R≥n′) → TorRq (S,R/R≥n) is 0. Using Lemma 3.2.2,

Corollary 3.3.6(2) holds just as well on the right side and so there is a right point

module P of R such that S/R ∼=
⊕∞

i=1 P [−i] as right R-modules. Now by part (1) of

Lemma 4.1.10 and the fact that Tor commutes with direct sums (Lemma 4.1.6(2))
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we get a commutative diagram

TorRq (S,R/R≥n′)
ψ1−→ TorRq (S,R/R≥n)

y ∼=
y ∼=

TorRq (S/R,R/R≥n′)
ψ2−→ TorRq (S/R,R/R≥n)

y ∼=
y ∼=

⊕∞
i=1 TorRq (P,R/R≥n′)[−i] ψ3−→ ⊕∞

i=1 TorRq (P,R/R≥n)[−i]

where the vertical maps are vector space isomorphisms and the ψi are the natural

maps. Now T n = TorRq (P,R/R≥n) is bounded, since PR is finitely generated and

R/R≥n is bounded, by Lemma 4.1.6(3). Also, the left bound l(n) of T n satisfies

limn→∞ l(n) = ∞, by Lemma 4.1.6(4). It follows that for n′ � n the natural map

θ : T n
′ → T n is 0. The restriction of the map ψ3 to any summand is just a shift of

the map θ, so ψ3 = 0 for n′ � n. Finally, the commutative diagram gives ψ1 = 0 for

n′ � n. This proves the claim.

Write nE
pq
2 = ExtpS(TorRq (S,R/R≥n), N). Since ψ1 = 0 for n′ � n, the natural

map nE
pq
2 → n′Epq

2 is also zero for n′ � n. Since n was arbitrary, we have Epq
2 =

limn→∞ nE
pq
2 = 0.

Therefore only the Epq
2 with q = 0 are possibly nonzero, and the spectral se-

quence collapses, giving an isomorphism of vector spaces for all m ≥ 1 (using also

Lemma 4.5.3) as follows:

Hm
R (π(N)) ∼= lim

n→∞
Extm+1

R (R/R≥n, N) ∼= lim
n→∞

Extm+1
S (TorR0 (S,R/R≥n), N)

= lim
n→∞

Extm+1
S (S/SR≥n, N).

(2) For each n ≥ 0, we have the short exact sequence

0 → S≥n/SR≥n → S/SR≥n → S/S≥n → 0
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and for any N ∈ S -Gr we have the associated long exact sequence in ExtiS(−, N).

The direct limit of a directed system of exact sequences is exact [41, Theorem 2.6.15],

and so taking the direct limit of all of the long exact sequences for various n we get

a long exact sequence

(4.5.10) . . .→ lim
n→∞

ExtiS(S/S≥n, N) → lim
n→∞

ExtiS(S/SR≥n, N)

→ lim
n→∞

ExtiS(S≥n/SR≥n, N) → . . .

Note that for i ≥ 1, limn→∞ Exti+1
S (S/S≥n, N) = Hi

S(π(N)), and by part (1),

limn→∞ Exti+1
S (S/SR≥n, N) = Hi

R(π(N)). Now by Lemma 4.5.8, we have that

ExtiS(S≥n/SR≥n, N) = 0 for i > t and any n ≥ 0, and so it follows from (4.5.10)

that Hi
S(π(N)) ∼= Hi

R(π(N)) as vector spaces for all i > t. Now since S -proj has

cohomological dimension t by Lemma 4.5.4, we have Hi
S(π(N)) = 0 for i > t and so

also Hi
R(π(N)) = 0 for i > t. Thus by definition cdR(π(N)) ≤ t.

(3) This result also follows immediately from the long exact sequence (4.5.10).

We now have our main result concerning the cohomological dimension of R, which

proves Theorem 1.5.10 from the introduction. The theorem suggests that cohomolog-

ical dimension may be finite even for rings which fail the χ condition, thus supporting

the conjecture that cohomological dimension should be a finite number for all graded

rings.

Theorem 4.5.11. Assume the critical density condition. The graded algebra R =

R(ϕ, c) has finite cohomological dimension, in particular cd(R -proj) ≤ t = GK(R)−

1.

Proof. We show first that the cohomological dimension of R -proj is indeed a finite

number. As usual, we reduce to the case of S-modules.
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Let M = R/I be an arbitrary cyclic left R-module. Suppose first that I 6= 0. We

have the exact sequence (3.3.15), which descends to an exact sequence in R -Qgr:

0 → π((SI ∩ R)/I) → π(R/I) → π(S/SI) → π(S/(R + SI)) → 0.

Now S/SI is an S-module already, and (SI ∩R)/I and (S/R+ SI) both have finite

left R-module filtrations where each factor has a compatible S-module structure, by

Lemma 3.3.16(1). By Lemma 4.5.2(1) and Proposition 4.5.9(2), we conclude that

cdR(π(S/SI)) ≤ t, cdR(π((SI ∩R)/I)) ≤ t, and cdR(π(S/(R+ SI))) ≤ t. A further

application of Lemma 4.5.2(1),(3) gives cdR(π(R/I)) ≤ t + 1.

Suppose instead that I = 0 and so M = R. We have the following exact sequence

in R -Qgr:

0 → π(R) → π(S) → π(S/R) → 0.

By Proposition 4.5.9(2) we have cdR(π(S)) ≤ t. Now S/R ∼=
⊕∞

i=1 RP (c−1)[−i]

by Corollary 3.3.6(2); since cohomology commutes with direct sums [8, Proposi-

tion 7.2(4)], cdR(π(S/R)) ≤ t by Proposition 4.5.9(2) also. We conclude that

cdR(π(R)) ≤ t+ 1 by Lemma 4.5.2(3).

Thus for any cyclic graded left R-module R/I, cdR(π(R/I)) ≤ t + 1. Any N ∈

R -gr has a finite filtration by cyclic modules, so by Lemma 4.5.2(1) cdR(π(N)) ≤

t + 1. Thus cd(R -proj) ≤ t + 1, and in particular R -proj has finite cohomological

dimension.

To complete the proof of the theorem, we need to improve the bound on the

cohomological dimension of R -proj we just calculated. By [8, Proposition 7.10(1)], if

A is a graded ring such that cd(A -proj) <∞, then cd(A -proj) = cd(π(A)); in other

words, it is enough to calculate the cohomological dimension of the distinguished

object. Thus we need only show that Ht+1
R (π(R)) = 0.
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Consider the long exact sequence in cohomology associated to the short exact

sequence 0 → π(R) → π(S) → π(S/R) → 0:

(4.5.12) . . .→ Ht
R(π(S/R)) → Ht+1

R (π(R)) → Ht+1
R (π(S)) . . .

Let P = P (c−1). Now Ht
S(π(P )) = 0 by Lemma 4.5.5 since GKS(P ) = 1 and t ≥ 2.

Then Ht
R(π(P )) = 0 by Proposition 4.5.9(3). Then since S/R ∼=

⊕∞
j=1 P (c−1)[−j]

by Corollary 3.3.6(2), it follows that Ht
R(π(S/R)) = 0. Also, Ht+1

R (π(S)) = 0 is

immediate from Proposition 4.5.9(2). We conclude from (4.5.12) that Ht+1
R (π(R)) =

0.

We remark that we expect that the exact value of the cohomological dimension

of R -proj is t, but we have not yet succeeded in showing this.

Before leaving the subject of cohomological dimension, we wish to mention another

approach to cohomology for noncommutative graded algebras which is provided by

the work of Van Oystaeyen and Willaert on schematic algebras [38, 39, 40]. An

algebra graded A is called schematic if it has enough Ore sets to give an open cover

of A -proj; we shall not concern ourselves here with the formal definition. For such

algebras one can define a noncommutative version of Čech cohomology which gives

the same cohomology groups as the cohomology theory we studied above.

It turns out that the theory of schematic algebras is of no help in comput-

ing the cohomology of R -proj. Indeed, if A is a connected N-graded noetherian

schematic algebra then ExtnA(Ak, A) is torsion as a right A-module for all n ∈ N [40,

Proposition 3], hence finite dimensional over k. But we saw in Theorem 4.4.3 that

dimk Ext2
R(Rk, R) = ∞. Thus we have incidentally proven the following proposition.

Proposition 4.5.13. Assume the critical density condition. Then R = R(ϕ, c) is a

connected N-graded noetherian domain, generated in degree 1, which is not schematic.
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�

The previously known non-schematic algebras have not been generated in degree

1 [40, page 12].

4.6 GK and Krull dimension for R(ϕ, c)

The GK-dimension is the most important dimension function in noncommutative

geometry, and it is certainly sufficient for our purposes above. However, for some

applications the Krull dimension is a better way of measuring the size of modules.

This dimension depends only on the lattice of submodules of a module, and so is

even defined for objects in an abelian category. We prove below that Krull and

GK-dimension correspond for modules over the ring R(ϕ, c), assuming the critical

density condition. This section is not used elsewhere in this thesis; we include it only

because it may be useful for later reference.

Let us define the Krull dimension.

Definition 4.6.1. Let A be any ring. We define the Krull dimension of the zero

module to be Kdim(0) = −1. For convenience let the ordinal numbers start with

−1. Suppose that the class of A-modules with Krull dimension α has been defined

for all ordinals α < β. Then we set Kdim(M) = β for every module M such that

(1) Kdim(M) has not already been defined to be an ordinal less than β;

(2) Given any descending chain M = M0 ⊇ M1 ⊇ M2 ⊇ . . . of submodules M ,

Kdim(Mj/Mj−1) < β (in particular, is already defined) for all j � 0.

If N never gets assigned a dimension in this inductive process then we leave

Kdim(N) undefined. We set Kdim(A) = Kdim(AA) if this exists.

If M is a noetherian module then Kdim(M) is defined. The Krull dimension is

always an exact dimension function, and it agrees with the usual Krull dimension,
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defined using chains of prime ideals, for noetherian modules over a commutative ring.

See [17, Chapter 13] for proofs of these facts.

Let U = k[x0, x1, . . . , xt] be the polynomial ring for some t ≥ 2, and let S = S(ϕ)

and R = R(ϕ, c) for some (ϕ, c) ∈ (Aut Pt)×Pt. It is standard that every M ∈ U -gr

has a Hilbert polynomial, that is some f ∈ Q[z] such that f(n) = dimkMn for n� 0.

Since S is a twist of the commutative polynomial ring U , and the equivalence of

categories S -Gr ∼ U -Gr preserves Hilbert functions, it is clear that every M ∈ S -gr

also has a Hilbert polynomial. We may easily show the same for R-modules.

Lemma 4.6.2. Let M ∈ R -gr. Then M has a Hilbert polynomial.

Proof. Since M has a finite filtration with cyclic factors, we reduce quickly to the

case where M is cyclic. If M = R then M has a Hilbert polynomial by Lemma

3.2.4. If M = R/I with I 6= 0, then we have the exact sequence (3.3.15). Now

S/SI ∈ S -gr and so S/SI has a Hilbert polynomial. By 3.3.16, the left R-modules

(SI ∩R)/I and S/(R+ SI) each have a finite filtration where the are factors either

finite dimensional over k or R-point modules, and so each module also has a Hilbert

polynomial. Thus R/I also has a Hilbert polynomial by the exact sequence.

The existence of Hilbert polynomials for all M ∈ R -gr immediately implies the

following.

Lemma 4.6.3. If M ∈ R -gr, then GK(M) ≥ Kdim(M). �

Proof. Call an N-graded k-algebra A left finitely partitive if given any M ∈ A -gr,

there is some n ≥ 0 such that every chain of graded modules

M = M0 ⊇M1 ⊇ · · · ⊇Mm

with GK(Mi/Mi+1) = GK(M) for all 0 ≤ i ≤ m − 1 satisfies m ≤ n. Since every

M ∈ R -gr has a Hilbert polynomial by Lemma 4.6.2, R is left finitely partitive (see
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the proof of [23, Corollary 8.4.9(ii)]). Further, because R is left finitely partitive it

follows that GK(M) ≥ Kdim(M) for all M ∈ R -gr [23, Proposition 8.3.18].

If N ∈ U -gr, then GK(N) = Kdim(N), since both dimension functions are equal

to the usual commutative Krull dimension. The equivalence of categories S -gr ∼

U -gr clearly preserves both GK-dimension and Krull dimension and so GK(N) =

Kdim(N) also holds for all N ∈ S -gr. Now we may prove the equality of the two

dimensions for R-modules.

Proposition 4.6.4. Let R = R(ϕ, c). For all M ∈ R -gr, GK(M) = Kdim(M).

Proof. Both dimensions are exact for modules in R -gr, so since M has a finite filtra-

tion with cyclic factors we may reduce to the case where M is cyclic.

We consider several cases depending on the GK-dimension of M . Note first that

GK(M) = 0 if and only if M has finite length, if and only if Kdim(M) = 0. If

GK(M) = 1, then 0 < Kdim(M) ≤ 1 by Lemma 4.6.3, and so Kdim(M) = 1.

Next, suppose that GK(M) = d with 1 < d < (t+ 1). Since GK(RR) = t+ 1, we

have M = R/I for some I 6= 0. Consider the exact sequence (3.3.15); By Lemma

3.3.16, all terms of the sequence are noetherian R-modules, and it is clear that

(SI∩R)/I and S/(R+SI) both have GK-dimension at most 1 over R, and thus also

Krull dimension at most 1. By the exactness of Krull and GK-dimension we conclude

that GKR(R/I) = GKR(S/SI) and KdimR(R/I) = KdimR(S/SI). Now since GK-

dimension depends only on the Hilbert polynomial for noetherian graded modules,

GKR(S/SI) = GKS(S/SI) = KdimS(S/SI), and since Krull dimension depends

only on the lattice of submodules, KdimS(S/SI) ≤ KdimR(S/SI). We conclude

that GKR(R/I) ≤ KdimR(R/I); the opposite inequality follows from Lemma 4.6.3,

so GKR(M) = KdimR(M).
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Finally, suppose that GK(M) = t + 1, so that M = R. If J is any nonzero

principal left ideal of R, then by a Hilbert function calculation clearly GK(R/J) = t

and so t = GK(R/J) = Kdim(R/J) by the previous case. Since R is a domain, t =

Kdim(R/J) < Kdim(R) [17, Proposition 13.7]. But also Kdim(R) ≤ GK(R) = t+1

by Lemma 4.6.3 and so Kdim(R) = t+ 1 = GK(R) in this last case.



CHAPTER V

Examples

In the previous chapters, we studied the rings R = R(ϕ, c), assuming the case

that R is noetherian, or equivalently (by Theorem 3.3.12) that C = {ϕi(c)}i∈Z is

a critically dense set of points (Hypothesis 3.3.14). In this chapter, we study this

critical density condition in detail. First, we show that for generic choices of ϕ and

c the set C is indeed critically dense, justifying our assumption of the noetherian

case above. On the other hand, we show that for automorphisms ϕ represented by

matrices which are not nearly diagonalizable, C is not even Zariski dense.

If one is willing to restrict one’s attention to base fields k with char k = 0, the

analysis of the critical density of the set C is much simpler. In §5.2 we show using

a theorem of Cutkosky and Srinivas that in this case the critical density of C is

equivalent to the density of the set C, which is easy to analyze in particular examples.

We give an explicit example to show, however, that if k has positive characteristic

then C may very well be dense but not critically dense.

For completeness, we also briefly discuss the rings R(ϕ, c) in the case where c is of

finite order under ϕ, so that C is a finite point set. We have excluded this possibility

ever since §3.2, and Theorem 3.3.12 does not correctly characterize the noetherian

property for R(ϕ, c) in this case. In fact, it is easy to show in case c has finite order

95
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under ϕ that R(ϕ, c) is strongly noetherian and satisfies χ, so that these rings have

none of the interesting behavior of the infinite order case.

Finally, in §5.3 we introduce rings generated by Eulerian derivatives, which was

the context in which rings of the form R(ϕ, c) first appeared in the literature [19].

We translate our earlier results into this language, and show that they solve several

open questions in [19].

5.1 The critical density property

In this section, we will show that C = {ϕi(c)}i∈Z is critically dense for generic

choices of ϕ and c. Throughout this section we write ci = ϕ−i(c). Also, we will iden-

tify automorphisms of Pt with elements of PGLt+1(k) = GLt+1(k)/k
× [18, page 151],

where we let matrices in GLt+1(k) act on the left on the homogeneous coordinates

(a0 : a1 : · · · : at) of Pt, considered as column vectors.

Let us define precisely our intended meaning of the word “generic”.

Definition 5.1.1. A subset U of a variety X is generic if its complement is contained

in a countable union of proper closed subvarieties of X. A property associated to

points of X holds generically if it holds for all points of some generic subset U of X.

If the base field k is uncountable, a generic subset is intuitively very large. For

example, if k = C then a property which holds generically holds “almost everywhere”

in the sense of Lebesgue measure. For any results below which involve genericity we

will assume that k is uncountable.

We begin our analysis of the critical density property by showing that for fixed

ϕ, the choice of c is not too important. Let us fix some notation for the next lemma.

Let ϕ ∈ PGLt+1(k) be represented by a matrix L ∈ GLt+1(k) (L is unique up to

scalar multiple). Then let V =
∑

i∈Z
kLi ⊆ Mt+1(k) = A(t+1)2 . Note that since L
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satisfies its characteristic polynomial, the dimension of V as a k-vector space is at

most t + 1. Then PV is a projective space of dimension at most t which contains

{ϕi}i∈Z.

Lemma 5.1.2. Fix ϕ ∈ Aut Pt. Let c, d ∈ Pt, and set ci = ϕ−i(c), di = ϕ−i(d),

C = {ci}i∈Z and D = {di}i∈Z. Let PV be the projective space constructed above.

(1) If C is contained in a hyperplane of Pt, then no infinite subset of C is critically

dense in Pt.

(2) If C is not contained in a hyperplane of Pt, then there is an isomorphism ψ : PV ∼=

Pt such that ψ(ϕi) = ϕi(c) for all i ∈ Z. In particular, if D is also not contained

in a hyperplane of Pt then there is an automorphism θ of Pt with θ(ci) = di for all

i ∈ Z.

Proof. (1) In this case, any infinite subset of C fails to be critically dense by definition.

(2) Consider Pt as the set of lines in At+1, and let c̃ ∈ At+1 be a non-zero point lying

on c ∈ Pt. There is a natural linear evaluation map ψ̃ : V → At+1 defined by

N 7→ N(c̃). Since P Im(ψ̃) is a linear space containing the set C, by hypothesis

P Im(ψ̃) = Pt and so ψ̃ must be surjective. Then since dimV ≤ t + 1, ψ̃ is an

isomorphism. This descends to an isomorphism ψ : PV → Pt which sends ϕi to ϕi(c)

for all i ∈ Z. The last statement is now obvious.

The following technical lemma handles the combinatorics involved in the next

theorem.

Lemma 5.1.3. Fix d ≥ 1, and set N =
(
t+d
d

)
. Let U = k[x0, x1, . . . , xt] be the

polynomial ring, and give monomials in U the lexicographic order with respect to

some fixed ordering of the variables. Let f1, f2, . . . , fN be the monomials of degree

d in U = k[x0, x1, . . . , xt], enumerated so that f1 < f2 < . . . fN in the lex order.
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Fix some sequence of distinct nonnegative integers a1 < a2 < · · · < aN . Then the

polynomial det(f
aj

i ) ∈ U is nonzero.

Proof. (1) Set F = det(f
aj

i ) ∈ U . Let SN be the symmetric group on N elements,

with identity element 1; then F is a sum of terms of the form hσ = ±∏N
i=1 f

aσ(i)

i for

σ ∈ SN . It is easy to see that the monomial f a11 fa22 . . . faN

N is the unique largest in

the lex order occurring among the hσ, and that it occurs only in h1 and thus may

not be cancelled by any other term.

Now we prove that C is critically dense for ϕ a suitably general diagonal matrix,

and c chosen from an open set of Pt. The next theorem proves Proposition 3.3.13.

We recall the following standard definition:

Definition 5.1.4. Let S be a set of points in Pt. We say that S is in general position

if given any 0 6= f ∈ Ud, the degree d hypersurface of Pt defined by the vanishing of

f contains at most
(
t+d
d

)
points of the set S.

Theorem 5.1.5. Let ϕ = diag(1, p1, p2, . . . , pt) with {p1, p2, . . . pt} algebraically in-

dependent over the prime subfield of k. Let c = (b0 : b1 : · · · : bt) ∈ Pt with bi 6= 0 for

all 0 ≤ i ≤ t. Then C = {ϕi(c)}i∈Z is in general position and R(ϕ, c) is noetherian.

Proof. We set cn = ϕ−n(c), so we have the explicit formula c−n = (b0 : b1p
n
1 : b2p

n
2 :

· · · : btp
n
t ). The matrix (bip

j
i )0≤i,j≤t has nonzero determinant, since the bi 6= 0 and

(pji ) is a Vandermonde matrix, with the pi distinct. Thus the points c0, c−1, . . . c−t

have linear span equal to Pt. Now by Lemma 5.1.2(2), we may replace c by any other

point such that the ci do not all lie on a hyperplane; we choose c = (1 : 1 : . . . 1) for

convenience, so that c−n = (1 : pn1 : pn2 : · · · : pnt ) for n ∈ Z.

Now we will prove that the set of points C is in general position. Suppose that this

fails, so there is some d ≥ 1 and a sequence of N =
(
t+d
d

)
integers a1 < a2 < · · · < aN
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such that the points ca1 , ca2 , . . . , caN
lie on a degree d hypersurface in Pt. We may

assume that the ai are nonnegative, since if the {cai
} lie on a degree d hypersurface

then the same is true of the points {ϕ−m(cai
)} = {cai+m} for any m ∈ Z. Let

f1, f2, . . . fN be the distinct degree d monomials in the variables xi of U . It follows

that det(fi(caj
)) = 0.

Given the explicit formula for cn, we have

det(fi(caj
)) = [det(f

aj

i )](1 : p−1
1 : p−1

2 : · · · : p−1
t ) = 0.

Now by Lemma 5.1.3 the polynomial det(f
aj

i ) is a nonzero homogeneous element

of U , which clearly has coefficients in the prime subfield of k. Thus p−1
1 , p−1

2 , . . . p−1
t

satisfy some nonzero non-homogeneous relation with coefficients in the prime subfield

of k, contradicting the hypothesis on the {pi}.

Thus the set C is in general position, and it follows immediately that C is critically

dense in Pt. Certainly then c has infinite order under ϕ, so that Hypothesis 3.2.1

holds. Then R(ϕ, c) is noetherian by Theorem 3.3.12.

Next, let us show that for generic choices of ϕ and c (in the sense of Defini-

tion 5.1.1), the ring R(ϕ, c) is noetherian. Because of Lemma 3.2.2(2), for every

fixed c we get the same class of rings {R(ϕ, c) | ϕ ∈ Aut Pt}. Thus we might as well

fix some arbitrary c and vary ϕ only.

Theorem 5.1.6. Assume that the base field k is uncountable. Fix c ∈ Pt. There is

a generic subset Y of X = Aut Pt such that R(ϕ, c) is noetherian for all ϕ ∈ Y .

Proof. By Lemma 3.2.2(2) there is no harm in assuming that c = (1 : 1 : · · · : 1).

Choose some homogeneous coordinates (zij)0≤i,j≤t for X ⊆ P(Mt+1(k)). Just as in

the proof of Theorem 5.1.5, we see that C = {ci}i∈Z fails to be in general position

if and only if there exists some d ≥ 1 and some choice of N =
(
t+d
d

)
nonnegative
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integers a1 < a2 < · · · < aN such that det fi(caj
) = 0, where the fi are the degree d

monomials in U .

Each condition det fi(caj
) = 0 is a closed condition in the coordinates of X;

moreover it does not hold identically, otherwise for no choice of ϕ would C be in

general position, in contradiction to Theorem 5.1.5. There are countably many such

conditions, and so the complement Y of the union of all of these closed subsets is

generic by definition. Thus for ϕ ∈ Y we have that C is in general position and so

R(ϕ, c) is noetherian, by Theorem 3.3.12.

Let us also note some examples where the critical density property fails. If the

matrix L representing the automorphism ϕ is not almost diagonalizable, then the

set C = {ϕi(c)}i∈Z will not even be dense in Pt.

Example 5.1.7. (1) Suppose that t = 2 and

ϕ =




1 1 0

0 1 1

0 0 1




with c ∈ P2 any point. Then C is not dense in P2.

(2) Similarly, suppose that t = 3 and

ϕ =




λ 1 0 0

0 λ 0 0

0 0 1 1

0 0 0 1




with c ∈ P3 any point. Again, C is not dense in P3.

(3) Represent ϕ as a matrix L ∈ Mt+1(k). If the Jordan canonical form of L has a

Jordan block of size ≥ 3 or more than one Jordan block of size 2, then given any

c ∈ Pt, the set C is not dense in Pt.
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Proof. (1) If char k = p > 0, then ϕ ∈ PGL3(Fp) and so ϕ has finite order. Then C

is finite and so certainly not dense (k is infinite).

Assume then that char k = 0. Suppose that c = (0 : 0 : 1), so that we have the

formula c−n = (n(n−1)/2 : n : 1) for n ∈ Z. The polynomial f = x0x2 + 1
2
x2x1− 1

2
x2

1

vanishes at (1 : n : n(n − 1)/2) for every n ∈ Z, and so {ci}i∈Z is not dense. It is

easy to see that the linear span of c0, c−1, c−2 is all of Pt, and so by Lemma 5.1.2, C

will not be dense for any choice of c.

(2) Suppose first that λ = 1 and c = (a0 : a1 : a2 : a3). If one of a1, a3 is nonzero,

then all of the ci lie on the hyperplane a3x1 − a1x3 = 0; if instead a1 = a3 = 0 then

all of the ci lie on the hyperplane a2x0 − a0x2 = 0.

Assume then that λ 6= 1. If char k = p > 0, then it is easy to see that C is

contained in a finite union of hyperplanes, so it is not dense. Now let char k = 0.

The rest of the proof is similar to part (1); we take c = (0 : 1 : 0 : 1), so that

c−n = (nλn−1 : λn : n : 1) for all n ∈ Z, and one may check that the linear span of

the {ci}∈Z is all of P3. Note that all of the ci lie on the hypersurface x1x2−λx0x3 = 0,

so C is not dense. The result for an arbitrary point c follows from Lemma 5.1.2.

(3) Suppose that X is a linear subvariety of Pt with ϕ(X) = X, so that ϕ restricts

to an automorphism of X, and θ is any linear projection map Pt → X. Then given

a subset D of points of Pt, if D is dense in Pt then θ(D) is dense in X.

Now if the canonical form of L has a Jordan block of size at least 3, then multiply

L by a scalar (which does not change the automorphism of Pt) so that this block has

eigenvalue 1; after changing coordinates, one sees that there is some linear subvariety

P2 ∼= X of Pt with ϕ(X) = X such that ϕ acts on X as the matrix of part (1). Then

if θ is a projection map Pt → X, the set θ(C) will not be dense in X, and so C is

not dense in Pt, regardless of the choice of c. Similarly, if L has at least two Jordan
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blocks of size 2 then ϕ acts on some P3 ∼= X ⊆ Pt as a matrix of the form in part

(2), and so again C can not be dense.

5.2 Improvements in characteristic 0 and the finite order case

The result of the preceding section that R(ϕ, c) is noetherian for generic choices

of ϕ and c holds for a field of arbitrary characteristic. In the case where char k = 0,

one can get a better result with less work, using the following theorem of Cutkosky

and Srinivas.

Theorem 5.2.1. [15, Theorem 7] Let G be a connected commutative algebraic group

defined over an algebraically closed field k of characteristic 0. Suppose that g ∈ G is

such that the cyclic subgroup H = 〈g〉 is dense in G. Then any infinite subset of H

is dense in G.

In our situation, we can derive the following consequence.

Lemma 5.2.2. Let char k = 0. Let (ϕ, c) ∈ (Aut Pt) × Pt, and set C = {ϕi(c)}i∈Z.

Then C is critically dense in Pt if and only if C is Zariski dense in Pt.

Proof. If C is critically dense in Pt, then C is of course dense in Pt by definition.

Now assume that C is dense. Choosing a matrix L ∈ GLt+1(k) to represent ϕ,

set V =
∑

i∈Z
kLi ⊆ Mt+1(k). Since C is certainly not contained in a hyperplane

of Pt, by Lemma 5.1.2(2) there is an isomorphism of varieties ψ : PV ∼= Pt where

PV is a projective subvariety of PMt+1(k) such that {ϕi}i∈Z ⊆ PV is a dense set,

and ψ(ϕi) = ϕi(c) for all i ∈ Z. Now let G = PV ∩ PGLt+1(k). Then G is an

algebraic group, since it is the closure of the subgroup H = {ϕi}i∈Z of PGLt+1(k)

[12, Proposition 1.3]. Since any two elements of V commute, G is commutative.

Note also that G is an open subset of a projective space, so G is irreducible and
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in particular connected. Finally, we always assume that the field k is algebraically

closed, so the hypotheses of Theorem 5.2.1 are all satisfied.

Now via the automorphism ψ, the set H = {ϕi}i∈Z is dense in PV , so that

H is certainly a dense subgroup of G. But then H is critically dense in G by

Theorem 5.2.1, and thus H is critically dense in PV . Finally, applying ψ again we

get that C is critically dense in Pt.

Thus in case char k = 0, the question of the noetherian property for R(ϕ, c)

reduces to the question of the density of C = {ϕi(c)}i∈Z, which is easy to analyze for

particular choices of ϕ and c. in particular, C will be dense if and only if c is not

contained in a proper closed set X ( Pt with ϕ(X) = X. Let us note some specific

examples. Note that part (1) of the following example is a significant improvement

over Theorem 5.1.5 if the field has zero characteristic.

Example 5.2.3. Let char k = 0. (1) Suppose that ϕ = diag(1, p1, . . . , pt), and that

the multiplicative subgroup of k× generated by p1, p2, . . . pt is ∼= Zt. Let c be the

point (a0 : a1 : · · · : at). Then R(ϕ, c) is noetherian if and only if
∏t

i=0 ai 6= 0.

(2) Let

ϕ =




1 1

0 1

p2

. . .

pt




such that the multiplicative subgroup of k× generated by the p2, . . . pt is ∼= Zt−1. Let

c = (a0 : a1 : · · · : at) ∈ Pt. Then R(ϕ, c) is noetherian if and only if
∏t

i=1 ai 6= 0.

Proof. (1) Let φ be the automorphism of U corresponding to ϕ; explicitly (up to

scalar multiple), φ(xi) = pixi, if we set p0 = 1. Suppose that I is a graded ideal
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of U with φ(I) = I. Then if we choose m � 0 such that Im 6= 0, then there is

some 0 6= f ∈ Im with φ(f) ∈ kf , since the action of φ on the finite dimensional

vector space Im has an eigenvector. If f =
∑
bIxI (where I is a multi-index), then

φ(f) =
∑
bIpIxI . The hypothesis on the pi forces pI to be distinct for distinct

multi-indices I of degree m, so f must be a scalar multiple of a monomial in the xi.

Thus any closed set X ( Pt with ϕ(X) = X is contained in the union of hyperplanes

∪ti=0{xi = 0}. It follows that if all ai 6= 0 then C is dense. Conversely, if some

ai = 0 then C is contained in the hyperplane xi = 0. Now apply Lemma 5.2.2 and

Theorem 3.3.12.

(2) The automorphism φ of U corresponding to ϕ is given by φ(x0) = x0 + x1,

φ(x1) = x1, and φ(xi) = pixi for 2 ≤ i ≤ t. If I is a graded ideal of U with φ(I) = I,

then as above there is some 0 6= f ∈ Um with φ(f) ∈ kf . We leave it to the reader

to show that this forces f to be scalar multiple of a monomial in x1, x2, . . . xt only;

then the result easily follows as in part (1).

Lemma 5.2.2 and Example 5.2.3(1) fail in positive characteristic. The next exam-

ple, which we thank Mel Hochster for suggesting, shows this explicitly.

Example 5.2.4. Let k have characteristic p > 0 and let y ∈ k be transcendental

over the prime subfield Fp. Suppose that t = 2, and let ϕ = diag(1, y, y + 1) and

c = (1 : 1 : 1). Then there is a line X ⊆ P2 such that cn ∈ X if and only if n = ±pj

for some j ∈ N. The set C = {ci}i∈Z is not critically dense, but it is a Zariski dense

set, and the multiplicative subgroup of k× generated by y and y+ 1 is isomorphic to

Z2. The ring R(ϕ, c) is neither left nor right noetherian.

Proof. We have c−n = ϕn(c) = (1, yn, (y + 1)n), so c has infinite order under ϕ.

If n = pj for some j ≥ 0, then (y + 1)n = yn + 1. Therefore c−n is on the line
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X = {x0 + x1 − x2 = 0} for all n = pj. On the other hand, suppose that n ≥ 0 is

not a power of p. Then some binomial coefficient
(
n
i

)
with 0 < i < n is not divisible

by p, and the binomial expansion of (y+ 1)n contains the nonzero term
(
n
i

)
yi. Since

y is transcendental over Fp, this implies (y + 1)n 6= yn + 1 and so c−n is not on the

curve X. Thus for n ≥ 0, c−n is on X if and only if n is a power of p. A similar

argument shows the same result for negative n.

It is now immediate that the set C is not a critically dense subset of P2, and it

follows from Theorem 3.3.12 that R(ϕ, c) is neither left nor right noetherian. It is

easy to see since y is transcendental over Fp that the multiplicative subgroup of k×

generated by y and y + 1 is isomorphic to Z2.

Now consider the Zariski closure C of C. Since the line X contains infinitely many

points of C, X ⊆ C. For all n ∈ Z, ϕn(X) also contains infinitely many points of

C, and so
⋃
n∈Z

ϕn(X) ⊆ C. Finally, one checks that the curves ϕn(X) are distinct

irreducible curves for all n ∈ Z. It follows that C = P2, and C is a Zariski dense

set.

Throughout this thesis, we have been assuming Hypothesis 3.2.1, that is that the

points ci = φ−i(c) are all distinct. We would now like to switch gears and touch

briefly on the case where c has finite order under ϕ. It turns out that in this case it

is very easy to prove that R(ϕ, c) has very nice properties. In particular, these rings

have none of the unusual features with respect to the noetherian property or the χ

condition that one finds in the infinite order case, which is why we excluded them.

Lemma 5.2.5. Assume that c has finite order under ϕ, and let R = R(ϕ, c). Then

(1) R is strongly noetherian.

(2) R satisfies χ.
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Proof. (1) Let n = min{i > 0 | ϕi(c) = c}, and let R′ = k ⊕ Rn ⊕ R2n ⊕ . . . be the

Veronese ring of degree n of R. Setting V = (mc)1 ⊆ U1, then by the definition of

R(ϕ, c),

Rnb = V nb = φnb−1(mc)1 ◦ · · · ◦ φ1(mc)1 ◦ (mc)1 =
[ n−1∏

i=0

(mci)
b
]
nb

for all b ≥ 1. Let I be the ideal (
∏n−1

i=0 mci) of U . Then I is generated in degree n,

and if we set

T = k ⊕ In ⊕ (I2)2n ⊕ . . . ,

then T is a graded subalgebra of U which is finitely generated in degree n. Now since

I = φ(I), the automorphism φ of U restricts to a graded automorphism of T , and it

is immediate that the ring R′ ⊆ S is the left Zhang twist of T ⊆ U by the twisting

system {φi}i∈N (see §2.3). If B is any noetherian commutative k-algebra, then φ

extends to an automorphism of U ⊗ B which fixes B, and R′ ⊗ B is again a Zhang

twist of T ⊗ B. Since it is a commutative finitely generated B-algebra, T ⊗ B is

noetherian, and since the noetherian property passes to Zhang twists [43, Theorem

5.1], R′ ⊗ B is noetherian. Finally, since R is finitely generated as a left and right

R′-module, R⊗ B is noetherian. In conclusion, R is strongly noetherian.

(2) Keep the notation from part (1). The commutative finitely generated con-

nected graded k-algebra T automatically satisfies χ [8, Proposition 3.11]. Let θ :

T -Gr ∼ R′ -Gr be the equivalence of categories which follows from the Zhang twist

construction. By Lemma 2.3.3(1), it follows that θ(Tk[n]) ∼= R′k[n] for all n ∈ Z.

Then by Lemma 2.3.3(2) we have ExtiR′(k, θ(N)) ∼= ExtiT (k,N) as k-spaces, for all

N ∈ T -gr and all i. Since T satisfies χ, it follows that R′ also satisfies χ. Finally, the

χ property passes upwards in finite ring extensions [8, Theorem 8.3], so R satisfies

χ on the left. Then applying Lemma 3.2.2(1), R has χ on the right also.
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5.3 Algebras generated by Eulerian derivatives

The original motivation for our study of the algebras R(ϕ, c) came from the results

of Jordan [19] on algebras generated by two Eulerian derivatives. In this final section

we show that Jordan’s examples are special cases of the algebras R(ϕ, c), and so we

may use our previous results to answer the main open question of [19], namely

whether algebras generated by two Eulerian derivatives are ever noetherian. In fact

we will prove that an algebra generated by a generic finite set of Eulerian derivatives

is noetherian.

Fix a Laurent polynomial algebra k[y±1] = k[y, y−1] over the base field k.

Definition 5.3.1. For p ∈ k \ {0, 1}, we define the operator Dp ∈ Endk k[y
±1] by

the formula f(y) 7→ f(py) − f(y)

py − y
. For p = 1, we define D1 ∈ Endk k[y

±1] by the

formula f 7→ df/dy. For any p 6= 0, we call Dp an Eulerian Derivative.

It is also useful to let y−1 be notation for the operator y−1 : yi 7→ yi−1 for i ∈ Z.

We now consider algebras generated by a finite set of Eulerian derivatives. There

are naturally two cases, depending on whether D1 is one of the generators.

Theorem 5.3.2. Suppose that {p1, . . . pt} ∈ k \ {0, 1} are distinct, and assume

that the multiplicative subgroup of k× these scalars generate has rank t. Let R =

k〈Dp1, Dp2, . . . , Dpt
〉. Then R ∼= R(ϕ, c) for

ϕ = diag(1, p−1
1 , p−1

2 , . . . , p−1
t ) and c = (1 : 1 : · · · : 1).

R is noetherian if either char k = 0 or if the {pi} are algebraically independent over

the prime subfield of k.

Proof. Set p0 = 1 and let wi = y−1 + (pi − 1)Dpi
for 0 ≤ i ≤ t. The automorphism

φ of U corresponding to ϕ is given (up to scalar multiple) by φ : xi 7→ p−1
i xi for
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0 ≤ i ≤ t. An easy calculation shows that S(ϕ) has relations {xjxi − p−1
j pixixj} for

0 ≤ i < j ≤ t; clearly these relations generate the ideal of relations for S(ϕ), since

S(ϕ) has the Hilbert function of a polynomial ring in t+ 1 variables.

As in [19, Section 2], it is straightforward to prove the identities wjwi−p−1
j piwiwj

for all 0 ≤ i, j ≤ t, so there is a surjection of algebras given by

ψ : S(ϕ) −→ k〈y−1, Dp1, . . . , Dpt
〉 ⊆ End k[y±1]

xi 7→ wi, 0 ≤ i ≤ t.

Now the hypothesis that the {pi} generate a rank t subgroup of k× ensures that

ψ is injective: this is proved for the case t = 2 in [19, Proposition 1]; the proof in

general is analogous. Thus ψ is an isomorphism of algebras. Then one checks that

the image under ψ of the subalgebra R(ϕ, c) of S(ϕ) is k〈Dp1 , Dp2, . . . , Dpt
〉 = R.

The noetherian property for R follows from Example 5.2.3(1) in case char k = 0,

or from Theorem 5.1.5 if the the {pi} are algebraically independent over the prime

subfield of k.

The case where D1 is one of the generators is very similar, and we only sketch the

proof.

Theorem 5.3.3. Assume that char k = 0. Let {p2, p3, . . . pt} ∈ k \ {0, 1} be distinct,

and assume that the multiplicative subgroup of k× that the {pi} generate is of rank

t− 1. Let R = k〈D1, Dp2, Dp3, . . . , Dpt
〉. Then R ∼= R(ϕ, c) for

ϕ =




1 1

0 1

p2
−1

. . .

p−1
t




and c = (0 : 1 : 1 : · · · : 1).
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The ring R is noetherian.

Proof. Let p1 = 1, and let wi = y−1 + (pi − 1)Dpi
for 1 ≤ i ≤ t. As in the preceding

proposition, one calculates the relations for the algebra S(ϕ), and using these and

the identities in [19, section 2], one gets an algebra surjection

ψ : S(ϕ) −→ k〈y−1, D1, Dp2, . . . , Dpt
〉

x0 7→ −D1

xi 7→ wi, 1 ≤ i ≤ t.

The hypothesis on the {pi} implies that ψ is an isomorphism, by an analogous proof

to that of [19, Proposition 1]. Then R(ϕ, c) is mapped isomorphically onto R. The

noetherian property for R follows from Example 5.2.3(2).

The results above easily imply that a ring generated by a generic set of Eulerian

derivatives is noetherian.

Theorem 5.3.4. Assume that k is uncountable. Let Vi be the closed set {yi = 0} in

At. There is a generic subset Y ⊆ At \ ∪ti=1Vi such that if (p1, p2, . . . , pt) ∈ Y then

R = k〈Dp1, Dp2, . . .Dpt
〉 is noetherian.

Proof. Let k[y1, y2, . . . yt] be the coordinate ring of At, and write V (f) for the van-

ishing set in At of f ∈ k[y1, y2, . . . yt]. Let F be the prime subfield of k, and set

A = F[y1, y2, . . . yt]. The set Y of points (p1, p2, . . . , pt) ⊆ At where the {pi} are

algebraically independent over F is the complement in At of
⋃
f∈A V (f). But since F

is countable, A is also countable and so Y is a generic subset of At (Definition 5.1.1).

Now apply Theorem 5.3.2.

We can also produce an example of a ring generated by Eulerian derivatives that

is not noetherian, which was also lacking in [19].
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Proposition 5.3.5. Assume that char k = p > 0 and that k has transcendence degree

at least 1 over its prime subfield Fp. Then there exist scalars p1, p2 ∈ k such that the

ring k〈Dp1 , Dp2〉 is not noetherian.

Proof. let y ∈ k be transcendental over Fp. Consider the ring R(ϕ, c) of Exam-

ple 5.2.4, where ϕ = diag(1, y, y + 1) and c = (1 : 1 : 1). As in Example 5.2.4, the

scalars y, y + 1 generate a rank 2 multiplicative subgroup of the field k, so setting

p1 = y and p2 = y + 1 we have R(ϕ, c) ∼= k〈Dp1, Dp2〉 by Theorem 5.3.2. But as we

saw in Example 5.2.4, R(ϕ, c) is not noetherian.
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ABSTRACT

Examples of Generic Noncommutative Surfaces

by

Daniel Scott Rogalski

Chair: J. Tobias Stafford

We study a class of noncommutative surfaces, and their higher dimensional ana-

logues, which come from generic subalgebras of twisted homogeneous coordinate

rings of projective space. Such rings provide answers to several open questions in

noncommutative projective geometry. Specifically, these rings R are the first known

graded algebras over a field k which are noetherian but not strongly noetherian: in

other words, R ⊗k B is not noetherian for some choice of commutative noetherian

extension ring B. This answers a question of Artin, Small, and Zhang. The rings R

are also maximal orders, but they do not satisfy all of the χ conditions of Artin and

Zhang. In particular, they satisfy the χ1 condition but not χi for i ≥ 2, answering

a question of Stafford and Zhang and a question of Stafford and Van den Bergh.

Finally, we show that these algebras have finite cohomological dimension.


