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Induction, Sequences and Series

Section 1: Induction

Suppose A(n) is an assertion that depends on n. We use induction to prove that A(n) is
true when we show that

• it’s true for the smallest value of n and

• if it’s true for everything less than n, then it’s true for n.

In this section, we will review the idea of proof by induction and give some examples. Here
is a formal statement of proof by induction:

Theorem 1 (Induction) Let A(m) be an assertion, the nature of which is dependent
on the integer m. Suppose that we have proved A(n0) and the statement

“If n > n0 and A(k) is true for all k such that n0 ≤ k < n, then A(n) is true.”

Then A(m) is true for all m ≥ n0.
1

Proof: We now prove the theorem. Suppose that A(n) is false for some n ≥ n0. Let m
be the least such n. We cannot have m = n0 because one of our hypotheses is that A(n0)
is true. On the other hand, since m is as small as possible, A(k) is true for n0 ≤ k < m.
By the inductive step, A(m) is also true, a contradiction. Hence our assumption that A(n)
is false for some n is itself false; in other words, A(n) is never false. This completes the
proof.

Definition 1 (Induction terminology) “A(k) is true for all k such that n0 ≤ k < n”
is called the induction assumption or induction hypothesis and proving that this implies
A(n) is called the inductive step. A(n0) is called the base case or simplest case.

1 This form of induction is sometimes called strong induction. The term “strong” comes
from the assumption “A(k) is true for all k such that n0 ≤ k < n.” This is replaced by
a more restrictive assumption “A(k) is true for k = n − 1” in simple induction. Actually,
there are many intermediate variations on the nature of this assumption, some of which we
shall explore in the exercises (e.g., “A(k) is true for k = n − 1 and k = n − 2, ” “A(k) is
true for k = n − 1, k = n − 2, and k = n − 3, ” etc.).
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Induction, Sequences and Series

Example 1 (Every integer is a product of primes) A positive integer n > 1 is called
a prime if its only divisors are 1 and n. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19,
23. In another unit, we proved that every integer n > 1 is a product of primes. We now
redo the proof, being careful with the induction.

We adopt the terminology that a single prime p is a product of one prime, itself. We
shall prove A(n):

“Every integer n ≥ 2 is a product of primes.”

Our proof that A(n) is true for all n ≥ 2 will be by induction. We start with n0 = 2, which
is a prime and hence a product of primes. The induction hypothesis is the following:

“Suppose that for some n > 2, A(k) is true for all k such that 2 ≤ k < n.”

Assume the induction hypothesis and consider A(n). If n is a prime, then it is a product
of primes (itself). Otherwise, n = st where 1 < s < n and 1 < t < n. By the induction
hypothesis, s and t are each a product of primes, hence n = st is a product of primes. This
completes the proof of A(n); that is, we’ve done the inductive step. Hence A(n) is true for
all n ≥ 2.

In the example just given, we needed the induction hypothesis “for all k such that
2 ≤ k < n.” In the next example we have the more common situation where we only need
“for k = n− 1.” We can still make the stronger assumption “for all k such that 1 ≤ k < n”
and the proof is valid.

Example 2 (Sum of first n integers) We would like a formula for the sum of the
first n integers. Let us write S(n) = 1 + 2 + . . . + n for the value of the sum. By a little
calculation,

S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, S(5) = 15, S(6) = 21.

What is the general pattern? It turns out that S(n) = n(n+1)
2

is correct for 1 ≤ n ≤ 6. Is
it true in general? This is a perfect candidate for an induction proof with

n0 = 1 and A(n) : “S(n) = n(n+1)
2 .”

Let’s prove it. We have shown that A(1) is true. In this case we need only the restricted
induction hypothesis; that is, we will prove the formula for S(n) by assuming the formula
for for k = n − 1. Thus, we assume only S(n − 1) is true. Here it is (the inductive step):

S(n) = 1 + 2 + · · · + n

=
(

1 + 2 + · · · + (n − 1)
)

+ n

= S(n − 1) + n

=
(n − 1)

(
(n − 1) + 1

)

2
+ n by A(n − 1),

=
n(n + 1)

2
by algebra.

This completes the proof.
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Section 1: Induction

Example 3 (Intuition behind the sum of first n integers) Whenever you prove
something by induction you should try to gain an intuitive understanding of why the
result is true. Sometimes a proof by induction will obscure such an understanding. In the
following array, you will find one 1, two 2’s, three 3’s, etc. The total number of entries is
1 + 2 + · · · + 8. On the other hand, the array is a rectangle with 4 × 9 = 36 entries. This

verifies that 1 + 2 + . . . + n = n(n+1)
2 is correct for n = 8. The same way of laying out the

integers works for any n (if n is odd, it is laid out along the bottom row, if n is even, it is
laid out in the last two columns).

1 2 2 4 4 6 6 8 8
3 3 3 4 4 6 6 8 8
5 5 5 5 5 6 6 8 8
7 7 7 7 7 7 7 8 8

This argument, devised by a fourth-grade girl, has all of the features of a powerful intuitive
image.

Here is another proof based on adding columns

S(n) = 1 + 2 + · · · + n
S(n) = n + (n − 1) + · · · + 1

2S(n) = (n + 1) + (n + 1) + · · · + (n + 1)
= n(n + 1)

Here is geometric view of this approach for n = 8.

O X X X X X X X X
O O X X X X X X X
O O O X X X X X X
O O O O X X X X X
O O O O O X X X X
O O O O O O X X X
O O O O O O O X X
O O O O O O O O X

Example 4 (Bounding the terms of a recursion) Consider the recursion

fk = fk−1 + 2fk−2 + fk−3, k ≥ 3, with f0 = 1, f1 = 2, f2 = 4.

We would like to obtain a bound on the fk, namely fk ≤ rk for all k ≥ 0. Thus there are
two problems: (a) what is the best (smallest) value we can find for r and (b) how can we
prove the result?

Since the recursion tells us how to compute fk from previous values, we expect to give
a proof by induction. The inequality fk ≤ rk tells us that f1 ≤ r1 = r. Since f1 = 2,
maybe r = 2 will work. Let’s try giving a proof with r = 2. Thus A(n) is the statement
“fn ≤ 2n” and n0 = 0. In order to use the recursion for fn, we need n ≥ 3. Thus we must
treat n = 0, 1, 2 separately

• Since f0 = 1 and 20 = 1, we’ve done n = 0.
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Induction, Sequences and Series

• We’ve already done n = 1.

• Since f2 = 4 = 22, we’ve done n = 2.

• Suppose n ≥ 3. By our induction hypothesis, fn−1 ≤ 2n−1, fn−2 ≤ 2n−2, and
fn−3 ≤ 2n−3. Thus

fn = fn−1 + 2fn−2 + fn−3 ≤ 2n−1 + 2 × 2n−2 + 2n−3 = 2n + 2n−3.

This won’t work because we wanted to conclude that fn ≤ 2n.

What is wrong? Either our guess that fn ≤ 2n wrong or our guess is right and we
need to look for another way to prove it. Since it’s easier to compute values of fn than it
is to find proofs, let’s compute. We have f3 = f2 + 2f1 + f0 = 4 + 2 × 2 + 1 = 9. Thus
f3 ≤ 23 is false! This illustrates an important idea: Often computing a few values can save
a lot of time.

Since 2 won’t work, what will? Let’s pretend we know the answer and call it r. We
already know that we need to have r > 2.

• Since r > 2, fn ≤ rn for n = 0, 1, 2.

• Suppose n ≥ 3. Working just as we did for the case r = 2, we have

fn ≤ rn−1 + 2rn−2 + rn−3.

We want this to be less than rn; that is, we want rn−1 + 2rn−2 + rn−3 ≤ rn. Dividing
both sides by rn−3, we see that we want r2 + 2r + 1 ≤ r3. The smallest r ≥ 2 that
satisfies this inequality is an irrational number which is approximately 2.148.

For practice, you should go back and write a formal induction proof when r = 2.2.

*More Advanced Examples of Induction

The next two examples are related, first because they both deal with polynomials,
and second because the theorem in one is used in the other. They also illustrate a point
about proof by induction that is sometimes missed: Because exercises on proof by induction
are chosen to give experience with the inductive step, students frequently assume that the
inductive step will be the hard part of the proof. The next example fits this stereotype
— the inductive step is the hard part of the proof. In contrast, the base case is difficult
and the inductive step is nearly trivial in the second example. A word of caution: these
examples are more complicated than the preceding ones.
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Section 1: Induction

Example 5 (Sum of kth powers of integers) Let Sk(n) be the sum of the first n kth

powers of integers. In other words,

Sk(n) = 1k + 2k + · · · + nk for n a positive integer.

In particular Sk(0) = 0 (since there is nothing to add up) and Sk(1) = 1 (since 1k = 1) for
all k. We have

S0(n) = 10 + 20 + · · · + n0 = 1 + 1 + · · · + 1 = n.

In Example 2 we showed that S1(n) = n(n+1)/2. Can we observe any patterns here? Well,

it looks like Sk(n) might be n(n+1)···(n+k)
k+1

A little checking shows that this is wrong since
S2(2) = 5. Well, maybe we shouldn’t be so specific. If you’re familiar with integration,
you might notice that Sk(n) is a Riemann sum for

∫ n

0
xk dx = nk+1/(k + 1). Maybe Sk(n)

behaves something like nk+1/(k + 1). That’s rather vague. We’ll prove

Theorem 2 (Sum of kth powers) If k ≥ 0 is an integer, then Sk(n) is a polynomial in
n of degree k + 1. The constant term is zero and the coefficient of nk+1 is 1/(k + 1).

Two questions may come to mind. First, how can we prove this since there is no
formula to prove? Second, what good is the theorem since it doesn’t give us a formula for
Sk(n)?

Let’s start with second question. We can use the theorem to find Sk(n) for any
particular k. To illustrate, suppose we don’t know what S1(n) is. According to the theorem
S1(n) = n2/2+An for some A since it says that S1(n) is a polynomial of degree two with no
constant term and leading term n2/2. With n = 1 we have S1(1) = 12/2+A×1 = 1/2+A.
Since S1(1) = 11 = 1, it follows that A = 1/2. We have our formula: S1(n) = n2/2 + n/2.

Let’s find S2(n). By the theorem S2(n) = n3/3 + An2 + Bn. With n = 1 and n = 2
we get

n direct calculation polynomial

1 S2(1) = 12 = 1 S2(1) = 13/3 + A × 12 + B × 1
2 S2(2) = 12 + 22 = 5 S2(2) = 23/3 + A × 22 + B × 2

After a little algebra, we obtain the two equations

n = 1 : A + B = 2/3

n = 2 : 4A + 2B = 7/3

Solving these equations, we find that A = 1/2 and B = 1/6. Thus S2(n) = n3

3 + n2

2 + n
6 .

Okay, enough examples — on with the proof! We are going to use induction on k and
a couple of tricks. The assertion we want to prove is

A(k) =
Sk(n) is a polynomial in n of degree k + 1
with constant term zero and leading term 1

k+1
.

The base case, k = 0 is easy: 10 +20 + · · ·+n0 = 1+1+ · · ·+1 = n, which has no constant
term and has leading coefficient 1

0+1
= 1.

IS-5



Induction, Sequences and Series

Now for the inductive step. We want to prove A(k). To do so, we will need A(t) for
0 ≤ t < k.

The first trick uses the binomial theorem (x+y)m =
∑m

t=0

(
m
t

)
xtym−t with m = k +1,

x = j and y = −1: We have

jk+1 − (j − 1)k+1 = jk+1 −
k+1∑

t=0

(
k + 1

t

)

jt(−1)k+1−t = −
k∑

t=0

(
k + 1

t

)

jt(−1)k+1−t.

Sum both sides over 1 ≤ j ≤ n. When we sum the right side over j we get

−
k∑

t=0

(
k + 1

t

)

St(n)(−1)k+1−t.

The second trick is what happens when we sum jk+1 − (j − 1)k+1 over j: Almost all the
terms cancel:

(1k+1 − 0k+1) + (2k+1 − 1k+1) + · · · + ((n − 1)k+1 − (n − 2)k+1) + (nk+1 − (n − 1)k+1)

= −0k+1 + nn+1 = nk+1.

Thus we have

nk+1 = −
k∑

t=0

(
k + 1

t

)

St(n)(−1)k+1−t

= −
(

k + 1

k

)

Sk(n)(−1)k+1−k −
k−1∑

t=0

(
k + 1

t

)

St(n)(−1)k+1−t

= (k + 1)Sk(n) −
k−1∑

t=0

(
k + 1

t

)

St(n)(−1)k+1−t.

We can solve this equation for Sk(n):

Sk(n) =
nk+1

k + 1
+

k−1∑

t=0

1

k + 1

(
k + 1

t

)

(−1)k+1−tSt(n).

By the induction hypothesis, St(n) is a polynomial in n with no constant term and degree
t + 1. Since 0 ≤ t ≤ k − 1, it follows that each term in the messy sum is a polynomial in n
with no constant term and degree at most k Thus the same is true of the entire sum. We
have proved that

Sk(n) =
nk+1

k + 1
+ Pk(n),

where Pk(n) is a polynomial in n with no constant term and degree at most k. This
completes the proof of the theorem.

Definition 2 (Forward difference) Suppose S : N → R. The forward difference of S is
another function denoted by ∆S and defined by ∆S(n) = S(n+1)−S(n). In this context,
∆ is called a difference operator.
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Section 1: Induction

We can iterate ∆. For example, ∆2S = ∆(∆S). If we let T = ∆S, then T (n) =
S(n + 1) − S(n) and

∆2S(n) = ∆T (n) = T (n + 1) − T (n)

= (S(n + 2) − S(n + 1)) − (S(n + 1) − S(n))

= S(n + 2) − 2S(n + 1) + S(n).

The operator ∆ has properties similar to the derivative operator d/dx. For example
∆(S + T ) = ∆S + ∆T . In some subjects, “differences” of functions play the role that
derivatives play in other subjects. Derivatives arise in the study of rates of change in
continuous situations. Differences arise in the study of rates of change in discrete situations.
Although there is only one type of ordinary derivative, there are three common types of
differences: backward, central and forward.

The next example gives another property of the difference operator that is like the
derivative. You may know that the general solution of the differential equation f (k)(x) =
constant is a polynomial of degree k + 1. In the next example we prove that the same is
true for the difference equation ∆kf(x) = constant.

Example 6 (Differences of polynomials) Suppose S(n) = an+ b for some constants a
and b. You should be able to check that ∆S(n) = a, a constant. With a little more work,
you can check that ∆2(an2 + bn + c) = 2a. We now state and prove a general converse of
these results.

Theorem 3 (Polynomial differences) If ∆kS is a polynomial of degree j, then S(n)
is a polynomial of degree j + k in n.

We’ll prove this by induction on k. A(k) is simply the statement of the theorem.

We now do the base case. Suppose k = 1. Let T = ∆S. We want to show that, if T
is a polynomial of degree j, then S is a polynomial of degree j + 1. We have

S(n + 1) =
(

S(n + 1) − S(n)
)

+
(

S(n) − S(n − 1)
)

+
(

S(n − 1) − S(n − 2)
)

+ · · · +
(

S(2) − S(1)
)

+ S(1)

=T (n) + T (n − 1) + T (n − 2) + · · · + T (1) + S(1)

=
n∑

t=1

T (t) + S(1).

What have we gained by this manipulation? We’ve expressed an unknown function
S(n+1) as the sum of a constant S(1) and the sum of a function T which is known to be a
polynomial of degree j. Now we need to make use of our knowledge of T to say something
about

∑
T (t).
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By assumption, T is a polynomial of degree j. Let T (n) = ajn
j + · · ·+a1n+a0, where

a0, . . . , aj are constants. Then

n∑

t=1

T (t) =
n∑

t=1

(ajt
j + · · · + a1t + a0)

=
n∑

t=1

ajt
j + · · · +

n∑

t=1

a1t +
n∑

t=1

a0

= aj

n∑

t=1

tj + · · · + a1

n∑

t=1

t + na0.

By Theorem 2,

n∑

t=1

tj is a polynomial of degree j + 1,

n∑

t=1

tj−1 is a polynomial of degree less than j + 1,

· · ·
n∑

t=1

t is a polynomial of degree less than j + 1.

Thus
∑n

t=1 T (t) is a polynomial of degree j + 1. Since S(n + 1) =
∑n

t=1 T (t) + S(1), it is
a polynomial of degree j + 1 in n.

Let’s see where we are with the base case. We’ve proved that S(n+1) is a polynomial
of degree j + 1 in n. But we want to prove that S(n) is a polynomial of degree j + 1 in n,
so we have a bit more work.

We can write S(n + 1) = bj+1n
j+1 + bjn

j + · · · + b1n + b0. Replace n by n − 1:

S(n) = bj+1(n − 1)j+1 + bj(n − 1)j + · · · + b1(n − 1) + b0.

Using the binomial theorem in the form (n− 1)k =
∑k

i=0

(
k
i

)
ni(−1)k−i, you should be able

to see that (n− 1)k is a polynomial of degree k in n. Using this in the displayed equation,
you can see that S(n) is a polynomial of degree j + 1 in n. The base case is done. Whew!

The induction step is easy: We are given that ∆kS is a polynomial of degree j. We
want to show that S is a polynomial of degree j +k. By definition, ∆kS = ∆(∆k−1S). Let
T = ∆k−1S. We now take three simple steps.

• By the definition of T , ∆T = ∆kS, which is a polynomial of degree j by the hypothesis
of A(k).

• By A(1), T is a polynomial of degree j + 1; that is, ∆k−1S is a polynomial of degree
j + 1.

• By A(k − 1) with j replaced by j + 1, it now follows that S is a polynomial of degree
(j + 1) + (k − 1) = j + k.

The proof is done.

The best way, perhaps the only way, to understand induction and inductive proof
technique is to work lots of problems. That we now do!

IS-8



Section 1: Induction

Exercises for Section 1

1.1. In each case, express the given infinite series or product in summation or product
notation.

(a) 12 − 22 + 32 − 42 · · ·
(b) (13 − 1) + (23 + 1) + (33 − 1) · · ·
(c) (22 − 1)(32 + 1)(42 − 1) · · ·
(d) (1 − r)(1 − r3)(1 − r5) · · ·
(e) 1

2!
+ 2

3!
+ 3

4!
+ · · ·

(f) n + n−1
2! + n−2

3! + · · ·

1.2. In each case give a formula for the nth term of the indicated sequence. Be sure to
specify the starting value for n.

(a) 1 − 1
2
, 1

2
− 1

3
, 1

3
− 3

4
, . . .

(b) 1
4 , 2

9 , 3
16 , . . .

(c) 1
2 , − 2

3 , 3
4 , . . .

(d) 2, 6, 12, 20, 30, 42, . . .

(e) 0, 0, 1, 1, 2, 2, 3, 3, . . .

1.3. In each case make the change of variable j = i − 1.

(a)
n+1∏

i=2

(i − 1)2

i

(b)

n−1∑

i=1

i

(n − i)2

(c)
2n∏

i=n

n − i + 1

i

(d)
n∏

i=1

i

i + 1

n∏

i=1

i + 1

i + 2

1.4. Prove by induction that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
for n ≥ 1.

1.5. Prove twice, once using Theorem 2 and once by induction, that
n∑

k=1

k3 =
(n(n + 1)

2

)2

for n ≥ 1.
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1.6. Prove by induction that
n∑

i=1

1

i(i + 1)
=

n

n + 1
for n ≥ 1.

1.7. Prove by induction that
n+1∑

i=1

i2i = n2n+2 + 2 for n ≥ 0.

1.8. Prove by induction that
n∏

i=2

(

1 − 1

i2

)

=
n + 1

2n
for n ≥ 2.

1.9. Prove by induction that
n∑

i=1

i i! = (n + 1)! − 1 for n ≥ 1.

1.10. Prove by induction that

n∏

i=0

1

2i + 1

1

2i + 2
=

1

(2n + 2)!
for n ≥ 0.

1.11. Prove without using induction that
n∑

k=1

5k = 2.5n(n + 1).

1.12. Prove that, for a 6= 1 and n ≥ t,

n∑

k=t

ak = at

(
an−t+1 − 1

a − 1

)

.

1.13. Prove twice, once with induction and once without induction, that 3 | (n3−10n+9)
for all integers n ≥ 0; that is, n3 − 10n + 9 is a multiple of 3.

1.14. Prove by induction that (x − y) | (xn − yn) where x 6= y are integers, n > 0.

1.15. Prove twice, once with induction and once without induction, that 6 | n(n2 +5) for
all n ≥ 1.

1.16. Prove by induction that n2 ≤ 2n for all n ≥ 0, n 6= 3.

1.17. Prove by induction that

√
n <

n∑

i=1

1√
i

for n ≥ 2.
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1.18. Consider the Fibonacci recursion fk = fk−2 + fk−1, k ≥ 2, with f0 = 3 and f1 = 6.
Prove by induction that 3 | fk for all k ≥ 0.

1.19. Consider the recursion Fk = Fk−1 + Fk−2, k ≥ 2, with F0 = 0 and F1 = 1. Prove
that Fk is even if and only if 3 | k. In other words, prove that, modulo 2, F3t = 0,
F3t+1 = 1, and F3t+2 = 1 for t ≥ 0.

1.20. Consider the recursion fk = 2f⌊ k

2
⌋, k ≥ 2, with f1 = 1. Prove by induction that

fk ≤ k for all k ≥ 1.

1.21. We wish to prove by induction that for any real number r > 0, and every integer
n ≥ 0, rn = 1. For n = 0, we have rn = 1 for all r > 0. This is the base case.
Assume that for k > 0, we have that, for 0 ≤ j ≤ k, rj = 1 for all r > 0. We
must show that for 0 ≤ j ≤ k + 1, rj = 1 for all r > 0. Write rk+1 = rsrt where
0 ≤ s ≤ k and 0 ≤ t ≤ k. By the induction hypothesis, rs = 1 and rt = 1 for all
r > 0. Thus, rk+1 = rsrt = 1 for all r > 0. Combining this with the induction
hypothesis gives that for 0 ≤ j ≤ k + 1, rj = 1 for all r > 0. Thus the theorem is
proved by induction. What is wrong?

1.22. We wish to prove by induction the proposition A(n) that all positive integers j,
1 ≤ j ≤ n, are equal. The case A(1) is true. Assume that, for some k ≥ 1, A(k) is
true. Show that this implies that A(k+1) is true. Suppose that p and q are positive
integers less than or equal to k + 1. By the induction hypothesis, p − 1 = q − 1.
Thus, p = q. Thus A(n) is proved by induction. What is wrong?

*1.23. Let a ∈ R, f : N → R and g : N → R. Prove the following.

(a) ∆(af) = a∆f ; that is, for all n ∈ N, the function ∆(af) evaluated at n equals
a times the function ∆f evaluated at n.

(b) ∆(f + g) = ∆f + ∆g.

(c) ∆(fg) = f∆g + g∆f + (∆f)(∆g); that is, for all n ∈ N,
(∆(fg))(n) = f(n)(∆g)(n) + g(n)(∆f)(n) + (∆f)(n) (Deltag)(n).

*1.24. Prove by induction on k that, for k ≥ 1,

(∆kf)(n) =
k∑

j=0

(
k

j

)

(−1)k−jf(n + j).

Hint: You may find it useful to recall that
(
k−1
j−1

)
+
(
k−1

j

)
=
(
k
j

)
for k ≥ j > 0.
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Section 2: Infinite Sequences

Our purpose in this section and the next is to present the intuition behind infinite sequences
and series. It is our experience, however, that the development of this intuition is greatly
aided by an exposure to a small amount of the precise formalism that lies behind the
mathematical study of sequences and series. This exposure takes away much of the mystery
of the subject and focuses the intuition on what really matters.

Recall that a function f with domain D and range (codomain) R is a rule which, to
every x ∈ D assigns a unique element f(x) ∈ R. Sequences are a special class of functions.

Definition 3 (Infinite sequence) Let n0 ∈ N = {0, 1, 2, . . .} A function f whose domain
is D = N + n0 = {n | n ∈ N and n ≥ n0} and whose range is the set R of real numbers is
called an infinite sequence.

An infinite sequence is often written in subscript notation; for example, a2, a3, a4, . . .
corresponds to a function f with domain N + 2, f(2) = a2, f(3) = a3 and so on.

Each value of the function is a term of the sequence. Thus f(4) is a term in functional
notation and a7 is a term in subscript notation.

If f is an infinite sequence with domain N + n0 and k ≥ n0, the f restricted to N + k
is called a tail of f . For example, a7, a8, . . . is a tail of a2, a3, . . ..

Example 7 (Specifying sequences) People specify infinite sequences in various ways.
The function is usually given by subscript notation rather than parenthetic notation; that
is, an instead of f(n). Let’s look at some examples of sequence specification.

• “Consider the sequence 1/n for n ≥ 1.” This is a perfectly good specification of the
function. Since the sequence starts at n = 1, we have n0 = 1 and an = 1/n.

• “Consider the sequence 1/n.” Since the domain of n has not been specified this is not
a function; however, specifying a sequence in this manner is common. What should
the domain be? The convention is that n0 ≥ 0 be chosen as small as possible. Since
1/0 is not defined, n0 = 1.

• “Consider the sequence 1/1, 1/2, 1/3, 1/4, . . .” It’s clear what the terms of this
sequence are, however no domain has been specified. There are an infinite number of
possibilities. Here are three.

n0 = 0 and an = 1
n+1

n0 = 1 and an = 1
n

n0 = 37 and an = 1
n−36

The first choice makes n0 as small as possible. The second choice makes an as simple
as possible, which may be convenient. The third choice is because we like the num-
ber 37. Which is correct? They all are — but use one of the first two approaches
since the third only confuses people. Since we haven’t specified a function by saying
1/1, 1/2, 1/3, 1/4, . . ., why do we consider this to be a sequence? Often it’s the terms
in the sequence that are important, so any way you make it into a function is okay.

People sometimes define an infinite sequence to be an infinite list.
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Sometimes, we will specify an infinite sequence that way, too.

• “Given the sequence an, consider the sequence a0, a2, a4, . . . of the even terms.” As
just discussed, a0, a2, a4, . . . specifies a sequence from the list point of view. We should
have said “the terms with even subscripts” rather than “the even terms;” however,
people seldom do that.

The next definition may sound strange at first, but you will get used to it.

Definition 4 (Limit of a sequence) Let an, n ≥ n0, be an infinite sequence. We say
that a real number A is the limit of an as n goes to infinity and write

lim
n→∞

an = A

if, for every real number ǫ > 0, there exists Nǫ such that for all n ≥ Nǫ, |an − A| ≤ ǫ.

We often omit “as n goes to infinity and simply say “A is the limit of the sequence
an.”

If a sequence an has a real number A as a limit, we say that the sequence converges

to A. If a sequence does not converge, we say that it diverges.

Since Definition 4 refers only to an with n ≥ Nǫ and since Nǫ can be as large as we
wish, we only need to look at tails of sequences. We state this as a theorem and omit the
proof.

Theorem 4 (Convergence and tails) Let an, n ≥ n0, be an infinite sequence. The
following are equivalent

• The sequence an converges.

• Every tail of the sequence an converges.

• Some tail of the sequence an converges.

The theorem tells us that we can ignore any “inconvenient” terms at the beginning of
a sequence when we are checking for convergence.

Example 8 (What does the Definition 4 mean?) It helps to have some intuitive feel
for the definition of the limit of a sequence. We’ll explore it here and in the next example.

The definition says an will be as close as you want to A if n is large enough. Note that
the definition does not say that A is unique — perhaps a sequence could have two limits
A and A∗. Since an will be as close as you want to A and also to A∗ at the same time if
n is large, we must have A = A∗. (If you don’t see this, draw a picture where an is within
|A − A∗|/3 of both A and A∗.) Since A = A∗ whenever A and A∗ are limits of the same
sequence, the limit is unique. We state this as a theorem:

Theorem 5 (The limit is unique) An infinite sequence has at most one limit. In other
words, if the limit of an infinite sequence exists, it is unique.
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Here’s another way to picture the limit of an infinite sequence. Imagine that you are
in a room sitting at a desk. You have with you a sequence an, n = 0, 1, 2, . . ., that you have
announced converges to a number A. Every now and then, there is a knock on the door
and someone enters the room and gives you positive real number ǫ (like ǫ = 0.001). You
must give that person an integer Nǫ > 0 such that for all n ≥ Nǫ, |an − A| ≤ ǫ. If you can
do that, the person will go away contented. If you are able to convincingly prove that for
any such ǫ > 0 there is such an Nǫ, then they will leave you alone because you are right in
asserting that A is the limit of the sequence an, as n goes to infinity.

We can phrase the condition for A to be the limit of the sequence in logic notation:

∀ ǫ > 0, ∃ Nǫ, ∀ n ≥ Nǫ, |an − A| ≤ ǫ.

Suppose we know that a sequence a0, a1, . . . has a limit A and we want to estimate A.
We can do this by computing an for large values of n. Of course, estimating the limit A
only makes sense if we know the sequence has a limit. How can we know that the sequence
has a limit? By Definition 4 of course! Unfortunately, Definition 4 requires that we know
the value of A.

What can we do about this? We’d like to know that a limit exists without knowing
the value of that limit. How can that be? Let’s look at it intuitively. The definition says
all the values of an are near A when n is large. But if they are all near A, then an and am

must be near each other when n and m are large. (You should be able to see why this is
so.) What about the converse; that is, if all the values of an and am are near each other
when n and m are large are they near some A which is the limit of the sequence? We state
the following theorem without proof.

Theorem 6 (Second “definition” of a convergent sequence) Let an, n ≥ n0, be
an infinite sequence.

The sequence an, n ≥ n0, converges to some limit A
if and only if

for every real number ǫ > 0 there is an Nǫ such that for all n,m ≥ Nǫ, |an − am| ≤ ǫ.

In other words, if the terms far out in the sequence are as close together as we wish, then
the sequence converges.

Some students misunderstand the definition and think we only need to show that
|an − an+1| ≤ ǫ for n ≥ Nǫ. Don’t fall into this trap. The sequence an = log n shows that
we can’t do that because log n grows without limit but | log n − log(n + 1)| = log(1 + 1/n)
which can be made as close to zero as you want by making n large enough.

Most beginning students have little patience with the formal precision of Definition 4
and Theorem 6. If you look at a particular example such as the sequence 2n+1

n+1 , n =
0, 1, 2, . . ., it is obvious that, as n goes to infinity, this sequence approaches A = 2 as
a limit. So why confuse the obvious with such formality? The reason is that we need
the precise definition of a limit is to enable us to discuss convergent sequences in general,
independent of particular examples such as 2n+1

n+1
, n ≥ 0. Without such formal definitions,

we couldn’t state general theorems precisely and proofs would be impossible.

IS-14



Section 2: Infinite Sequences

Example 9 (Convergence from three viewpoints) Let’s take a look at the convergence
of an = 2n+1

n+1 , n = 0, 1, 2, . . . from three different points of view.

• First, we can manipulate the terms to see that they converge: Since

2n + 1

n + 1
=

2 + 1/n

1 + 1/n
, lim

n→∞
(2 + 1/n) = 2 and lim

n→∞
(1 + 1/n) = 1,

we have

lim
n→∞

2n + 1

n + 1
= lim

n→∞
2 + 1/n

1 + 1/n
=

limn→∞(2 + 1/n)

limn→∞(1 + 1/n)
= 2/1 = 2.

• Second, using Definition 4, given ǫ > 0, choose Nǫ = 1/ǫ. Then, if n ≥ Nǫ,

|an − 2| =

∣
∣
∣
∣

2n + 1

n + 1
− 2

∣
∣
∣
∣
=

∣
∣
∣
∣

−1

n + 1

∣
∣
∣
∣
=

1

n + 1
<

1

n
≤ 1

Nǫ
= ǫ.

• Third, using Theorem 6, given ǫ > 0, choose Nǫ = 2
ǫ
. We have

|an−am| =

∣
∣
∣
∣

2n + 1

n + 1
− 2m + 1

m + 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(

2 − 1

n + 1

)

−
(

2 − 1

m + 1

)∣
∣
∣
∣
=

∣
∣
∣
∣

1

m + 1
− 1

n + 1

∣
∣
∣
∣
.

But, since |x − y| ≤ |x| + |y|,
∣
∣
∣
∣

1

m + 1
− 1

n + 1

∣
∣
∣
∣
≤ 1

m + 1
+

1

n + 1
<

1

Nǫ
+

1

Nǫ
=

2

Nǫ
= ǫ.

The easiest method for showing convergence of a particular sequence is usually the
first method. You may wonder about our values of Nǫ in the other two methods:

• How did we find them? We found them by working from both ends. To illustrate,
consider the third method. Suppose n ≥ Nǫ and m ≥ Nǫ but we don’t know what to
choose for Nǫ. We found that |an − am| < 2/Nǫ. We want to know how to choose Nǫ

so that |an − am| ≤ ǫ. You should be able to see that it will be okay if 2/Nǫ ≤ ǫ. Thus
we need Nǫ ≥ 2/ǫ.

• Would other values work? Yes. If someone comes up with a value that works, then
any larger value of Nǫ would also work because it tells us to ignore more of the earlier
values in the sequence.

In Definition 4, we said that, if a sequence an, n ≥ n0, does not converge then it is
said to diverge. So far we haven’t looked at any examples. Here are two.

• The infinite sequence is an = (−1)n alternates between +1 and −1. It clearly fails our
definition and theorem on convergence. For example, the theorem fails with any 0 <
ǫ < 2. There is no Nǫ such that for all m,n ≥ Nǫ, |an − am| ≤ ǫ, since |an − an+1| = 2
for all n ≥ 0.

• Another example of a divergent sequence is bn = log n, n ≥ 1. Although

lim
n→∞

|bn − bn+1| → 0,
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|bn − b2n| = log 2 and so the theorem fails for any ǫ < log 2.

The sequences an and bn of the previous paragraph differ in a fundamental way, as
described by the following definition.

Definition 5 (Bounded sequence) A sequence an, n = 0, 1, 2, . . . is bounded if there
exists a positive number B such that |an| ≤ B for n = 0, 1, 2, . . ..

The sequence an = (−1)n is an example of a bounded divergent sequence. The sequence
bn = log n is an example of an unbounded divergent sequence. All the convergent sequences
we have looked at are bounded. The next theorem shows that there are no unbounded
convergent sequences.

Theorem 7 (Boundedness) Convergent sequences are bounded.

Proof: Let an, n ≥ n0, be convergent with limit A. Take ǫ = 1. Then there is an N1 such
that for all n ≥ N1, |an − A| ≤ 1. Since an is within 1 of A, it follows that |an| ≤ |A| + 1
for all n ≥ N1. Let B be the maximum of |an0

|, |an0+1|, |an0+2|, . . . , |aN1−1|, and |A| + 1.
Then, |an| ≤ B for n ≥ n0.

The converse of the previous theorem is, “Bounded sequences are convergent.” This
statement is false (an = (−1)n for example).

The next theorem gives some elementary rules for working with sequences.

Theorem 8 (Algebraic rules for sequences) Suppose that an, n ≥ n0 and bn, n ≥ n0

are convergent sequences and that

lim
n→∞

an = A and lim
n→∞

bn = B.

Define sequences tn,rn, sn, pn and qn, n ≥ n0, by

tn = αan + β, α, β ∈ R; sn = an + bn;
pn = anbn; and, if bn 6= 0 for all n ≥ n0, qn = an/bn.

Then
lim

n→∞
tn = αA + β, lim

n→∞
sn = A + B, lim

n→∞
pn = AB

and, if B 6= 0, limn→∞ qn = A/B.

Proof: All we are given is that the sequences an and bn converge. This means that
|an − A| and |bn − B| are small when n is large. The proof technique is to use that fact
to show that other values are small. We illustrate the technique by proving the assertion
about pn. We omit the proofs for tn, sn and qn.

We must show that we can make |anbn − AB| small. Thus, we need to relate an − A
and bn − B to anbn − AB. An obvious idea is to try multiplying an − A and bn − B.
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Unfortunately, the product is not of the right form, so we need to be more clever. After
some experimentation, you might notice that

anbn − AB = an(bn − B) + B(an − A)

and that the parenthesized expressions are small. This is the key! We have

|anbn − AB| = |an(bn − B) + B(an − A)| ≤ |an||bn − B| + |B||an − A|.

By Theorem 7, there is a constant A∗ such that |an| ≤ A∗ for all n. Thus

|anbn − AB| ≤ A∗|bn − B| + |B||an − A|.

This says that, for all large n, |anbn−AB| is at most a constant (A∗) times a small number
(|bn − B|) plus a constant times another small number. If we were being informal in our
proof, we could stop here. However, a formal proof requires that we tell how to compute
Nǫ for the sequence anbn.

We find the rule for Nǫ by, in effect, working backwards. For δ > 0, let N∗
δ be such

that |an − A| ≤ δ and |bn − B| ≤ δ for all n ≥ N∗
δ . We can do this because an and bn

converge. Now we have

|anbn − AB| ≤ A∗|bn − B| + |B||an − A| ≤ A∗δ + |B|δ = (A∗ + |B|)δ.

Since we want this to be at most epsilon, we define δ by (A∗ + |B|)δ = ǫ. Thus
δ = ǫ/(A∗ + |B|) and so Nǫ = N∗

ǫ/(A∗+|B|).

An important class of sequences are those which are “eventually monotone,” a concept
we now define.

Definition 6 (Monotone sequence) A sequence an, n ≥ n0, is

• increasing if an0
< an0+1 < an0+2 < · · ·,

• decreasing if an0
> an0+1 > an0+2 > · · ·,

• nondecreasing if an0
≤ an0+1 ≤ an0+2 ≤ · · ·,

• nonincreasing if an0
≥ an0+1 ≥ an0+2 ≥ · · ·,

• monotone if it is either nonincreasing or nondecreasing.

If a tail of the sequence is monotone, we say the sequence is eventually monotone. We
define “eventually increasing” and so on similarly.

Nonincreasing is also called “weakly decreasing” and nondecreasing is also called “weakly
increasing.” If you understand the definition, you should see the reason for this terminology.

Eventually monotone sequences are fairly common and have nice properties. The
following theorem gives one property.

Theorem 9 (Convergence of bounded monotone sequences) If an infinite sequence
is bounded and eventually monotone, then it converges.
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We won’t prove this theorem. It is, in a very basic sense, a fundamental property of
real numbers. We leave the understanding of this theorem to your intuition. The power of
the theorem is in its generality so that it can be applied in discussing sequences in general
as well as to discussing specific examples.

We now study three common classes of eventually monotone functions and their relative
rates of growth.

Example 10 (Polynomials, exponentials and logarithms) Consider the sequence
an, n = 0, 1, 2, . . ., where an = n/1.1n. It is a fact that you probably learned in high school,
and certainly learned if you have had a course in calculus, that any exponential function
f(x) = bx, b > 1, “grows faster” than any polynomial function g(x) = ckxk + . . .+ c1x+ c0.
By this we mean that

lim
x→∞

g(x)/f(x) = 0 when g(x) = ckxk + . . . + c1x + c0, f(x) = bx and b > 1.

If for example, we take the sequence an, n = 0, 1, 2, . . ., where an = n3/2n, we get a0 = 0,
a1 = 1/5, a2 = 2.25, a3 = 3.375, a4 = 4, and a5 = 3.90625. Some calculations may convince
you that a4 > a5 > a6 > · · ·, and so the sequence is eventually decreasing.

Recall from high school that the inverse function of the function bx is the function
logb(x). That these functions are inverses of each other means that blog

b
(x) = logb(b

x) = x
for all x > 0. It is particularly important that all computer science students understand
the case b = 2 as well as the usual b = e (the “natural log”) and b = 10. You should
graph 2x, for −1 ≤ x ≤ 5 and log2(x) for 0.5 ≤ x ≤ 32. You can compute log2(x) on
your calculator using the LN key: log2(x) = LN(x)/LN(2) (or you can use the LOG key
instead of LN). Note that log2(x) is also written lg(x). Here are typical graphs for b > 1.

bx logb(x)

Notice that, although both bx and logb(x) get arbitrarily large as x gets arbitrarily large,
bx grows much more rapidly than logb(x). In fact, logb(x) grows so slowly that, for any
α > 0

lim
x→∞

logb(x)/xα = 0.
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For example,
lim

x→∞
logb(x)/x0.01 = 0.

For those of you who have had some calculus, you can prove the above limit is correct by
using l’Hospital’s Rule. If you haven’t had calculus, you can do some computations with
your computer or calculator to get a feeling for this limit. For example, if b = 2 then

log2(2
10)/20.10 = 9.33033 log2(2

100)/21.0 = 50 log2(2
1000)/210.0 = 0.976563 .

If for example, we take the sequence an, n = 0, 1, 2, . . ., where an = log2(n)/n0.01, we
will find that the sequence increases at first. But, starting at some (rather large) m, we
have am > am+1 > am+2 > · · ·. These terms will continue to get smaller and smaller and
approach zero as a limit. The sequence is eventually decreasing.

These are examples of general results such as:

If b > 1, c > 0 and d > 0, then nc/bnd

and (logb(n
d))/nc are

eventually monotonic sequences that converge to zero.

We omit the proof. One can replace nc and nd by more general functions of n.

People may write log without specifying a base as in logb. What do they mean? Some
people mean b = 10 and others mean b = e. Still others mean that it doesn’t matter what
value you choose for b as long as it’s the same throughout the discussion. That’s what we
mean — if there’s no base on the logarithm, choose your favorite b > 1.

We conclude our discussion of sequences with a discussion of “converges to infinity.”

In Definition 4, we defined what it means for a sequence to have a real number A
as its limit. We also find in many mathematical discussions, the statement that “an,
n = 0, 1, 2, . . . has limit +∞” or “an, n = 0, 1, 2, . . . has limit −∞.” Alternatively, one sees
“an, n = 0, 1, 2, . . . tends to +∞, converges to +∞, or diverges to +∞. In symbols,

lim
n→∞

an = +∞ or lim
n→∞

an = −∞.

This use of “limit” is really an abuse of the term. Such sequences are actually divergent
sequences, but they diverge with a certain consistency. Thus, an = n, n = 0, 1, 2, . . . or
an = −n, n = 0, 1, 2, . . ., though divergent, are said to “have limit +∞” or “have limit
−∞, ” respectively. Compare this with the divergent sequence an = (−1)nn, n = 0, 1, 2, . . .,
which hops around between ever increasing positive and negative values. Here is a formal
definition.

Definition 7 (Diverges to infinity) Let an, n ≥ n0 be an infinite sequence. We say
that the sequence converges to +∞ or that it diverges to +∞ and write

lim
n→∞

an = +∞

if, for every real number r > 0, there exists Nr such that for all n ≥ Nr, an ≥ r.

Similarly, we say that the sequence converges to −∞ or that it diverges to −∞ and
write

lim
n→∞

an = −∞

if, for every real number r < 0, there exists Nr such that for all n ≥ Nr, an ≤ r.
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Exercises for Section 2

2.1. For each of the following sequences, answer the following questions.

• Is the sequence bounded?

• Is the sequence monotonic?

• Is the sequence eventually monotonic?

(a) an = n for all n ≥ 0.

(b) an = 1 for all n ≥ 0.

(c) an = 2n + (−1)n for all n ≥ 0.

(d) an = n + (−1)n2 for all n ≥ 0.

(e) an = 2n − 10n for all n ≥ 0.

(f) an = 10 − 2−n for all n ≥ 0.

2.2. Discuss the convergence or divergence of the following sequences:

(a) 2n3+3n+1
3n3+2

, n = 0, 1, 2, . . .

(b) −n3+1
2n2+3 , n = 0, 1, 2, . . .

(c) (−n)n+1
nn+1

, n = 0, 1, 2, . . .

(d) nn

(n/2)2n , n = 1, 2, . . .

2.3. Discuss the convergence or divergence of the following sequences:

(a) log2(n)
log3(n) , n = 1, 2, . . .

(b) log2(log2(n))
log2(n) , n = 2, 3, . . .

*Section 3: Infinite Series

We now look at infinite series. Every infinite series is associated with two infinite sequences.
Thus the study of infinite series can be thought of as the study of sequences. However, the
viewpoint is different.

Definition 8 (Infinite series) Let an, n ≥ n0, be an infinite sequence. Define a new
sequence sn, n ≥ n0, by

sn = an0
+ an0+1 + · · · + an =

n∑

k=n0

ak.
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The infinite sequence sn is called the sequence of partial sums of the sequence an. We call
an a term of the series.

If limn→∞ sn exists, we write

∞∑

k=n0

ak = lim
n→∞

sn.

We call
∑∞

k=n0
ak the infinite series whose terms are the ak and whose sum is limn→∞ sn.

We say the infinite series converges to limn→∞ sn.

If limn→∞ sn does not exist, we still speak of the infinite series
∑∞

k=n0
ak, but now we

say that the series diverges and that it has no sum. If sn diverges to +∞ or to −∞, we
say that the infinite series diverges to +∞ or to −∞.

The infinite series associated with a tail of a sequence, is a tail of the infinite series
associated with the sequence. In this case, mathematical notation is clearer than words: If
t ≥ n0, then

∞∑

k=t

ak is a tail of
∞∑

k=n0

ak.

So where are we? Given an infinite sequence an, n ≥ n0, we can ask whether the infinite
series

∑∞
k=n0

ak converges. This is the same as asking whether the sequence of partial sums
converges. So what’s new? There are often situations where we know something about the
terms an and are interested in the sum of the series. For example, what can be said about
the value of

∑∞
k=1 1/k? the value of

∑∞
k=0(−1)k/k!? We get to see the terms, but we’re

interested in the sum. Thus, we want to use information about the infinite sequence an

to say something about the infinite sequence sn of partial sums. This presence of two

sequences is what makes the study of infinite series different from the study of a single
sequence. Here’s a simple example of that interplay:

Theorem 10 (Terms are small) If the infinite series
∑∞

n=n0
an converges, then

limn→∞ an = 0.

Proof: We are given that the infinite series converges, which means that the sequence
sn =

∑n
k=n0

an converges. We use Theorem 6 with m = n − 1 and an in the theorem
replaced by sn. By Theorem 6, whenever n is large enough

ǫ ≥ |sn − sm| = |sn − sn−1| = |an| = |an − 0|.

Since ǫ can be made as close to zero as we wish, this proves that limn→∞ |an − 0| = 0.
Therefore an converges to zero.
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Example 11 (Geometric series) For r ∈ R, let an = rn, n ≥ 0. The partial sum sn

associated with an is called a geometric series. Note that, from high school mathematics,

sn =
n∑

k=0

rk =

{
rn+1−1

r−1
if r 6= 1,

n + 1 if r = 1.

If |r| ≥ 1, the infinite series
∑∞

k=0 rk diverges by Theorem 10. If |r| < 1 then

lim
n→∞

sn =
∞∑

k=0

rk =
1

1 − r
.

For example, when r = 2/3, we have
∑∞

k=0(2/3)k = 3.

Example 12 (Harmonic series) A basic infinite series, denoted by Hn, is the one that
is associated with the sequence an = 1/n, n = 1, 2, . . .. Let Hn = a1 + · · · + an denote the
partial sums of this series. The sequence Hn, n = 1, 2, . . ., is called the harmonic series

(for reasons that any of you who have studied music will know). In infinite series notation,
this series can be represented by

∞∑

n=1

1

n
.

We can visualize this series by grouping its terms as follows:

1

1
︸︷︷︸

b0

+
1

2
+

1

3
︸ ︷︷ ︸

b1

+
1

4
+

1

5
+

1

6
+

1

7
︸ ︷︷ ︸

b2

+
1

8
+

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
︸ ︷︷ ︸

b3

+ · · · .

Note that bk contains the terms

1

2k

1

2k + 1
· · · 1

2k+1 − 1
=

1

2k + (2k − 1)

and so contains 2k terms. Which bk is 1
11

in? Easy. Just take ⌊log2(11)⌋ = 3 and you get
the answer, b3. In general, 1

n is in bk where k = ⌊log2(n)⌋.
What is a lower bound for the sum of all the numbers in b3? Easy. They are all bigger

than 1
16

, the first number in b4. There are 8 numbers in b3, all bigger than 1
16

, so a lower
bound is b3 > 8 × 1

16 = 1
2 . You can do this calculation in general for group bk, getting

bk > 1
2k+1 × 2k = 1

2
. Now that you are getting a feeling for this grouping, you can see that

an upper bound for the sum of the terms in bk is 1
2k × 2k = 1. Thus

1

2
≤ bk ≤ 1.

Now suppose you pick an integer n and want to get an estimate on the size of Hn. To
get a lower bound just find the k such that bk contains the term 1/n. (By our earlier work,
k = ⌊log2(n)⌋.) Then

Hn > b0 + b1 + · · · + bk−1 > k/2 and Hn ≤ b0 + b1 + · · · + bk ≤ k + 1.
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Using our value for k and the fact that x − 1 < ⌊x⌋ ≤ x, we have

log2(n) − 1

2
< Hn ≤ log2(n) + 1.

We learned in Example 10 that log2(n) is a very slowly growing function of n. But it does
get arbitrarily large (has limit +∞). Thus, Hn grows very slowly and diverges.

There is more to the story of the harmonic series. Although the derivations are beyond
the scope of our study, the results are worth knowing. Here is a very interesting way of
representing Hn:

Hn = ln(n) + γ +
1

2n
− 1

12n2
+

ǫn

120n4
where 0 < ǫn < 1.

The “ln” refers to the natural logarithm. It is a special function key on all scientific
calculators. To ten decimal places, γ = 0.5772156649.

Your first reaction might be, “What good is this formula, we don’t know ǫn exactly?” Since
ǫn > 0, we’ll get a number that is less than Hn if we throw away ǫn/120n4. Since ǫn < 1,
we’ll get a number that is greater than Hn if we replace ǫn/120n4 with 1/120n4. These
upper and lower bounds for Hn are quite close together — they differ by 1/120n4. With
n = 10 we have upper and lower bounds that differ by only 1/1200000 = 0.0000008333 . . ..
For example, by adding up the terms we get H10 = 2.928968254 to nine decimal places.
The lower bound gotten with ǫ10 = 0 is 2.928967425 and the upper bound gotten with
ǫ10 = 1 is 2.928968258. Get the idea? No matter what value ǫn takes in the interval from
0 to 1, the denominator 120n4 grows rapidly with n, so the error is small.

Example 13 (Alternating harmonic series) Let hn be the sequence of partial sums
associated with the sequence (−1)n−1/n for n ≥ 1. The series hn is called the alternating

harmonic series. What about the infinite series

∞∑

n=1

(−1)n−1

n
?

It converges. To see why, imagine that you are standing in a room with your back against
the wall. Imagine that you step forward 1 meter, then backwards 1/2 meter, then forwards
1/3 meter, etc. After n such steps, your distance from the wall is hn meters. By the
time you are stepping backwards one millimeter, forwards 0.99 millimeter, etc., an observer
in the room (who by now has decided that you are crazy) would conclude that you are
standing still. In other words, you have converged. It turns out your position doesn’t
converge to infinity because your forward and backward motions practically cancel each
other out. How can we see this? Each pair of forward–backward steps moves you a little
further from the wall; e.g., 1 − 1

2 = 1
2 , 1

3 − 1
4 = 1

12 . Thus you never have to step through
the wall. (All partial sums are positive.) On the other hand, after first stepping forward 1
meter, each following pair of backward–forward steps moves you a little closer to the the
wall; e.g., − 1

2 + 1
3 = −1

6 , − 1
4 + 1

5 = −1
20 . Thus you are never further than 1 meter from the

wall.

This argument works just as well for any size steps as long as they are decreasing in
size towards zero and are alternating forward and backwards. In the case of the alternating
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harmonic series, your distance from the wall will converge to ln(2), meters, where “ln” is
the natural logarithm. We won’t prove this fact, as it is best proved using calculus. You can
check this out on your calculator or computer by adding up a lot of terms in the series.

A series is called alternating if the terms alternate in sign; that is, the sign pattern of
terms is + − + − · · · or − + − + · · ·.

Example 14 (Some particular alternating series and variations) By taking par-
ticular sequences an that converge monotonically to zero, you get particular alternating
series. Here are some examples of alternating convergent series:

∞∑

n=1

(−1)n 1√
n

∞∑

n=2

(−1)n 1

ln(n)

∞∑

n=3

(−1)n 1

ln(ln(n))
.

It is an interesting fact about such series that the sequence (−1)n in the above examples
can be replaced by any sequence bn which has bounded partial sums. Of course, (−1)n,
n = k, k + 1, . . ., has bounded partial sums for any starting value k (bounded by B = 1).
For example, it can be shown that bn = sin(n) and bn = cos(n) are sequences with bounded
partial sums.2 Thus,

∞∑

n=1

sin(n)
1

n
and

∞∑

n=0

cos(n)
1

ln(n)

are convergent generalized “alternating” series. The fact that these generalized “alternat-
ing” series converge is proved in more advanced courses and called Dirichlet’s Theorem.

Example 15 (Series and the integral test) Suppose we have a function f(x) that
is defined for all x ≥ m where m ≥ 0 is an integer. Then we can associate with f(x) a
sequence an = f(n), n ≥ m. In summation notation,

∑∞
n=m an is an infinite series, and we

are interested in the divergence or convergence of this series. Suppose that f(x) is weakly
decreasing for all x ≥ t where t ≥ m. Study the pictures shown below. If the area under
the curve is infinite, as intended in the first picture, then the summation

∑∞
k=t ak, which

represents the sum of the areas of the rectangles, must also be infinite.

If the area under the curve is finite, as in the second picture, then the summation
∑∞

k=t ak, which represents the sum of the areas of the rectangles, must also be finite.

2 Here is how it’s done for those of you who are familiar with complex numbers and
Euler’s relation. From Euler’s relation, cos(n) = ℜ(ein) and so

N∑

n=0

cos(n) = ℜ
(

N∑

n=0

(ei)n

)

= ℜ
(

ei(N+1) − 1

ei − 1

)

.

Since the numerator is bounded and the denominator is constant, this is bounded.
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t t+1 t+2 t+3 t+4 t+5 t+6 t+7

Who cares 
what f looks
like here?

x

f(x)

a t at+1 at+2 at+3 at+4 at+5 at+6

If ak = f(k), k ≥ t, then

∫ ∞

t

f(x) dx = +∞ implies
∞∑

k=t

ak diverges.

t t+1 t+2 t+3 t+4 t+5 t+6 t+7

Who cares 
what f looks
like here?

x

f(x)

at+1 at+2 at+3 at+4 at+5 at+6 at+7

If ak = f(k), k ≥ t, then

∫ ∞

t

f(x) dx < +∞ implies

∞∑

k=t

ak converges.

In one or the other of the two cases, we conclude that a tail of the given series diverges or
converges and, thus, that the given series diverges or converges.

This way of checking for convergence and/or divergence is called the integral test.

Example 16 (General harmonic series) We can extend the harmonic series Hn with

terms 1
n

to a series H
(r)
n based on the sequence 1

nr , where r is a real number. We call the
series the general harmonic series with parameter r. In summation notation, this series is

∞∑

n=1

1

nr
.
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If r ≤ 0 then it is obvious that H
(r)
n , n = 1, 2, . . ., diverges. For example, r = −1 gives the

series ∞∑

n=1

n,

which diverges. If r > 0 then the function fr(x) = 1
xr is strictly decreasing for x ≥ 1. This

means that we can apply the integral test with t = 1.

From calculus, it is known that
∫∞
1

(1/xr) dx = +∞ if r ≤ 1. It is also known that
∫∞
1

(1/xr)) dx = 1
r−1 if r > 1. Thus, by the integral test,

∞∑

n=1

1

nr
diverges if 0 < r ≤ 1 and converges if r > 1.

The integral test can produce some surprises. The harmonic series Hn, based on 1
n ,

n = 1, 2, . . ., diverges. But what about the series sn, n = 2, 3, . . ., based on 1
n ln(n)

? The

terms of that series get smaller faster, so maybe it converges? Applying the integral test
gives

∫
1

x ln(x)
dx = ln(ln(x)) + C so

∫ ∞

2

1

x ln(x)
dx = +∞.

Thus ∞∑

n=2

1

n ln(n)
diverges.

It looks like ln(n) just doesn’t grow fast enough to help make the terms 1/n ln(n) small
enough for convergence. So using ln(n) twice probably won’t help. It gives the series sn,
n = 2, 3, . . ., based on 1

n(ln(n))2
. We have

∫
1

x(ln(x))2
dx =

−1

ln(x)
+ C so

∫ ∞

2

1

x(ln(x))2
dx <

1

ln(2)
.

Thus ∞∑

n=2

1

n(ln(n))2
converges!

In fact, if δ > 0, then
∞∑

n=2

1

n(ln(n))1+δ
converges.

You should prove this by using the integral test.

Definition 9 (Absolute convergence) Let sn, n = 0, 1, 2, . . ., be a series based on the
sequence an, n = 0, 1, 2, . . .. Let tn, n = 0, 1, 2, . . ., be a series based on the sequence |an|,
n = 0, 1, 2, . . .. If the series tn converges then the series sn is said to converge absolutely or
to be absolutely convergent. In other words,

∞∑

n=0

an converges absolutely if
∞∑

n=0

|an| converges.
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If a series is convergent, but not absolutely convergent, then it is called conditionally con-

vergent.

Any geometric series with |r| < 1 is absolutely convergent. The alternating harmonic
series is convergent but not absolutely convergent (since the harmonic series diverges).

Theorem 11 (Absolute convergence and bounded sequences) Suppose that sn,
n ≥ n0 is an absolutely convergent series based on the sequence an, n ≥ n0. Let bn, n ≥ n0

be a bounded sequence. Then the series pn, n ≥ n0, based on the sequence anbn, n ≥ n0,
is absolutely convergent. In other words,

∞∑

n=n0

an converges absolutely and bn bounded implies
∞∑

n=n0

anbn converges absolutely.

Proof: Let M > 0 be a bound for bn. Thus, M ≥ |bn|, n ≥ n0. Since an is absolutely
convergent, given ǫ > 0, there exists Nǫ/M such that for all i ≥ j ≥ Nǫ/M , |aj+1|+ |aj+2|+
· · · |ai| ≤ ǫ/M . Given ǫ > 0, let Nǫ = Nǫ/M . Then, for all i ≥ j ≥ Nǫ,

|aj+1||bj+1| + |aj+2||bj+2| + · · · |ai||bi| ≤ (|aj+1| + |aj+2| + · · · |ai|)M ≤ (ǫ/M)M = ǫ.

This shows that pn is absolutely convergent.

Example 17 (Series convergence and using your intuition) Based on the ideas we
have studied thus far, you can develop some very powerful intuitive ideas that will correctly
tell you whether or not a series converges. We discuss these without proof. The basic idea
is to look at a constant C times a convergent or divergent series: C

∑∞
n=0 an =

∑∞
n=0 C an.

Then think about what conditions on a sequence bn, will allow you to replace the constant
C on the right hand side by bn to get

∑∞
n=0 bnan without changing the convergence or

divergence of the series. Here are some specific examples:

(1) Suppose the series
∑∞

n=0 an converges absolutely. An example is an = rn, 0 ≤ r < 1
(i.e., the geometric series). If you have a bounded sequence bn, n = 0, 1, 2, . . . then
you can replace C to get

∑∞
n=0 bnan and still retain absolute convergence. This was

proved in Theorem 11. An example is

∞∑

n=0

(1 + sin(n))rn , 0 ≤ r < 1.

Note that, bn can be any convergent sequence (which is necessarily bounded). One
way this situation arises in practice is that you are given a series such as

∞∑

n=1

2n + 1

n3 + 1
.

You notice that the terms 2n+1
n3+1 can be written 2+1/n

n2+1/n and thus, for large n, the original

series should be very similar to the terms of the series

∞∑

n=1

2

n2
,
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which converges absolutely (general harmonic series with parameter 2). Thus, the
original series with terms 2n+1

n3+1 converges absolutely. Here is an explanation based on
absolute convergence and bounded sequences. Start with the absolutely convergent
series

∑∞
n=1

1
n2 . Here, an = n−2. Let cn = (2n + 1)/(n3 + 1). The limn→∞ cn/an = 2.

By our previous discussion, with bn = cn/an,

∞∑

n=0

bnan =
∞∑

n=1

2n + 1

n3 + 1

converges absolutely.

(2) Suppose the series
∑∞

n=n0
an converges (but perhaps only conditionally). In that case,

you can replace the constant C by any eventually monotonic convergent sequence bn.
In this case,

∑∞
n=n0

anbn converges. This result is proved in more advanced courses
and called Abel’s Theorem. For example, take the alternating series

∞∑

n=1

C
(−1)n

√
n

,

which converges by Example 14. Replace C with bn = (1 + 1/
√

n) which is weakly
decreasing, converging to 1:

∞∑

n=1

(

1 +
1√
n

)
(−1)n

√
n

.

The monotonicity of bn is important. If we replace C with bn = (1 + (−1)n/
√

n) which
converges to 1 but is not monotonic. We obtain

S =
∞∑

n=1

(

1 +
(−1)n

√
n

)
(−1)n

√
n

=
∞∑

n=1

(
(−1)n

√
n

+
1

n

)

.

Since
∞∑

n=1

(−1)n

√
n

converges and
∞∑

n=1

1

n
diverges,

S diverges.

We conclude this section by looking at the question “How common are primes?” What
does this mean? Suppose the primes are called pn so that p1 = 2, p2 = 3, p3 = 5, p4 = 7,
p5 = 11 and so on. We might ask for an estimate of pn. It turns out that pn is approximately
n lnn. In fact, the Prime Number Theorem, states that the ratio of pn and n lnn approaches
1 as n goes to infinity. The proof of the theorem requires much more background in number
theory and much more time than is available in this course.

It might be easier to look at p1 + · · · + pn. Indeed it is, but it is still too hard for this
course.
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It turns out that things are easier if we can work with an infinite sum. Of course
p1 + · · · + pn + · · · diverges to infinity because there are an infinite number of primes, so
that sum is no help. What about summing the reciprocals:

∞∑

n=1

1

pn
?

Now we’re onto something useful that is within our abilities!

• If the primes are not very common, we might expect pn ≥ Cn1+δ for some δ > 0
and some C. In that case,

∑
1/pn converges because

∑
1/pn ≤ C

∑
1/n1+δ and this

general harmonic series converges by Example 16.

• On the other hand, if the primes are fairly common, then
∑

1/pn might diverge because
∑

1/n diverges.3

How can we study
∑

1/pn? The key is unique factorization.

Imagine that it made sense to talk about the infinite sum 1+2+3+4+ · · ·. We claim
that then

1 + 2 + 3 + 4 + · · · = (1 + 2 + 22 + 23 + · · ·)(1 + 3 + 32 + · · ·)(1 + 5 + 52 + · · ·) · · · ,

where the factors on the right are sums of powers of primes. Why is this? Imagine that you
multiply this out using the distributive law. Let’s look at some number, say 300 = 22×3×52.
We get it by taking 2 from 1 +2 +22 + · · ·, 32 from 1 +3 +32 + · · ·, 52 from 1 +5 +52 + · · ·
and 1 from each of the remaining factors 1 + p + p2 + · · · for p = 7, 11, . . .. This is the
only way to get 300 as a product. In fact, by unique factorization, each positive integer is
obtained exactly once this way.

Instead, suppose we do this with the reciprocals, remembering that p0 = 1. We have

1

1
+

1

2
+

1

3
+

1

4
+ · · · =

(
1

p0
1

+
1

p1
1

+
1

p2
1

+ · · ·
)(

1

p0
2

+
1

p1
2

+
1

p2
2

+ · · ·
)

· · · .

Each of the series in parentheses is a geometric series and so it can be summed. In fact

1

p0
n

+
1

p1
n

+
1

p2
n

+ · · · =
1

1 − 1/pn
=

pn

pn − 1
= 1 +

1

pn − 1
.

We can’t give a proof in this way because the series we started with is the harmonic series,
which diverges, and we don’t have tools for dealing with divergent series. As a result, we
work backwards and give a proof by contradiction.

Suppose that
∑

1/pn converges. Since the terms are positive, it converges absolutely.
We now introduce a mysterious sequence bn. (Actually the values of bn were found by
continuing with the incorrect approach in the previous paragraph.) Let

bn = pn log

(

1 +
1

pn − 1

)

.

3 In fact,
∑

1/pn diverges because pn behaves like n lnn (which we can’t prove) and
∑

1/n lnn diverges by Example 16.

IS-29



Induction, Sequences and Series

We claim bn is bounded. This can be proved easily by l’Hôpital’s Rule, but we omit the
proof since we have not discussed l’Hôpital’s Rule. Let an = 1/pn. Remember that we
are assuming

∑
1/pn converges. By Theorem 11,

∑
anbn converges. By the previous

paragraph, anbn is the logarithm of

1

p0
n

+
1

p1
n

+
1

p2
n

+ · · · .

Hence, again by the previous paragraph,
∑

anbn is the logarithm of the harmonic series.
Since

∑
anbn converges, so does the harmonic series. This is a contradiction.

Since we reached a contradiction by assuming that
∑

1/pn converges, it follows that
∑

1/pn diverges and so the primes are fairly common. How close are we to the Prime Num-
ber Theorem (pn behaves like n lnn)? If pn grew much faster than this, say
pn > Cn(lnn)1+δ for some C and some δ > 0, then

∑
1/pn would converge because

∑
1/n(lnn)1+δ converges by Example 16. But we’ve just shown that

∑
1/pn diverges.

Exercises for Section 3

3.1. Discuss the convergence or divergence of the following series:

(a)
∞∑

n=1

2n/2

n2 + n + 1
(b)

∞∑

n=1

n + 1

2n + 1

3.2. Discuss the convergence or divergence of the following series:

(a)
∞∑

n=1

n5

5n
(b)

∞∑

n=1

1

n2 − 150

3.3. Discuss the convergence or divergence of the following series:

(a)
∞∑

n=1

1

(n3 − n2 − 1)1/2
(b)

∞∑

n=1

(n + 1)1/2 − (n − 1)1/2

n

3.4. Discuss the convergence or divergence of the following series:

(a)
∞∑

n=1

(−1)n

n

(

1 +
1

22
+

1

32
+ · · · + 1

n2

)

(b)
∞∑

n=1

(−1)n

n

(

1 +
1

2
+

1

3
+ · · · + 1

n

)

3.5. Discuss the convergence or divergence of the following series:

(a)

∞∑

n=0

sin(n)

|n − 99.5| (b)

∞∑

n=0

(−1)n−9n2 − 5

n3 + 1

IS-30



Review Questions

Multiple Choice Questions for Review

In each case there is one correct answer (given at the end of the problem set). Try
to work the problem first without looking at the answer. Understand both why the
correct answer is correct and why the other answers are wrong.

1. Which of the following sequences is described, as far as it goes, by an explicit formula
(n ≥ 0) of the form gn = ⌊n

k ⌋?
(a) 0000111122222

(b) 001112223333

(c) 000111222333

(d) 0000011112222

(e) 0001122233444

2. Given that k > 1, which of the following sum or product representations is WRONG?

(a) (22 + 1)(32 + 1) · · · (k2 + 1) =
∏k

j=2[(j + 1)2 − 2j]

(b) (13 − 1) + (23 − 2) + · · · + (k3 − k) =
∑k−1

j=1 [(k − j)3 − (k − j)]

(c) (1 − r)(1 − r2)(1 − r3) · · · (1 − rk) =
∏k−1

j=0 (1 − rk−j)

(d) 1
2!

+ 2
3!

+ 3
4!

+ · · · + k−1
k!

=
∑k

j=2
j−1
j!

(e) n + (n − 1) + (n − 2) + · · · + (n − k) =
∑k+1

j=1 (n − j + 1)

3. Which of the following sums is gotten from
∑n−1

i=1
i

(n−i)2 by the change of variable

j = i + 1?

(a)
∑n

j=2
j−1

(n−j+1)2

(b)
∑n

j=2
j−1

(n−j−1)2

(c)
∑n

j=2
j

(n−j+1)2

(d)
∑n

j=2
j

(n−j−1)2

(e)
∑n

j=2
j+1

(n−j+1)2

4. We are going to prove by induction that
∑n

i=1 Q(i) = n2(n + 1). For which choice of
Q(i) will induction work?

(a) 3i2 − 2 (b) 2i2 (c) 3i3 − i (d) i(3i − 1) (e) 3i3 − 7i

5. The sum
∑n

k=1(1 + 2 + 3 + · · · + k) is a polynomial in n of degree

(a) 3 (b) 1 (c) 2 (d) 4 (e) 5

6. We are going to prove by induction that for all integers k ≥ 1,

√
k ≤ 1√

1
+

1√
2

+ · · · + 1√
k

.
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Clearly this is true for k = 1. Assume the Induction Hypothesis (IH) that√
n ≤ 1√

1
+ 1√

2
+ · · · 1√

n
. Which is a correct way of concluding this proof by induction?

(a) By IH, 1√
1

+ 1√
2

+ · · · 1√
n+1

≥ √
n + 1√

n+1
=

√
n + 1 + 1 ≥

√
n + 1.

(b) By IH, 1√
1

+ 1√
2

+ · · · 1√
n+1

≥
√

n + 1 + 1√
n+1

≥
√

n + 1.

(c) By IH, 1√
1

+ 1√
2

+ · · · 1√
n+1

≥ √
n + 1 ≥

√
n + 1.

(d) By IH, 1√
1

+ 1√
2

+ · · · 1√
n+1

≥ √
n + 1√

n
≥

√
n
√

n+1√
n

≥ n+1√
n+1

=
√

n + 1.

(e) By IH, 1√
1

+ 1√
2

+ · · · 1√
n+1

≥ √
n + 1√

n+1
=

√
n
√

n+1+1√
n+1

≥
√

n
√

n+1√
n+1

= n+1√
n+1

=√
n + 1.

7. Suppose b1, b2, b3, · · · is a sequence defined by b1 = 3, b2 = 6, bk = bk−2 + bk−1 for
k ≥ 3. Prove that bn is divisible by 3 for all integers n ≥ 1. Regarding the induction
hypothesis, which is true?

(a) Assuming this statement is true for k ≤ n is enough to show that it is true for
n + 1 and no weaker assumption will do since this proof is an example of “strong
induction.”

(b) Assuming this statement is true for n and n − 1 is enough to show that it is true
for n + 1.

(c) Assuming this statement is true for n, n−1, and n−3 is enough to show that it is
true for n + 1 and no weaker assumption will do since you need three consecutive
integers to insure divisibility by 3.

(d) Assuming this statement is true for n is enough to show that it is true for n + 1.

(e) Assuming this statement is true for n and n − 3 is enough to show that it is true
for n + 1 since 3 divides n if and only if 3 divides n − 3.

8. Evaluate lim
n→∞

(−1)n3

n3 + 1

2n3 + 3
.

(a) −∞ (b) + ∞ (c) Does not exist. (d) + 1 (e) − 1

9. Evaluate lim
n→∞

log5(n)

log9(n)
.

(a) ln(9)/ ln(5) (b) ln(5)/ ln(9) (c) 5/9 (d) 9/5 (e) 0

10. Evaluate lim
n→∞

cos(n)

log2(n)
.

(a) Does not exist. (b) 0 (c) + 1 (d) − 1 (e) + ∞

*11. The series
∞∑

n=1

(−1)n n500

(1.0001)n
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Review Questions

(a) converges absolutely.

(b) converges conditionally, but not absolutely.

(c) converges to +∞
(d) converges to −∞
(e) is bounded but divergent.

*12. The series
∞∑

n=1

(−1)n

√
n

(

1 +
1

n2

)

.

(a) is bounded but divergent.

(b) converges absolutely.

(c) converges to +∞
(d) converges to −∞
(e) converges conditionally, but not absolutely.

Answers: 1 (c), 2 (b), 3 (a), 4 (d), 5 (a), 6 (e), 7 (b), 8 (c), 9 (a), 10 (b), 11 (a),
12 (e).
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