- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.
- 1. (10 pts.) If S is a subset of the complex numbers, let S^* be the nonzero numbers in S. Recall that $\mathbb Z$ are the integers and $\mathbb Q$ are the rationals. Answer the following TRUE or FALSE.
 - (a) \mathbb{Z} with addition is a subgroup of \mathbb{Q} with addition.
 - (b) \mathbb{Q}^* with multiplication is a subgroup of \mathbb{Q} with addition.
 - (c) \mathbb{Z}^* with multiplication is a subgroup of \mathbb{Q}^* with multiplication.
 - (d) For all n > 0, the even permutations in S_n form a group.
 - (e) For all n > 0, the odd permutations in S_n form a group.
- 2. (8 pts.) Let $\alpha = (1543)(235)$ be an element of S_5 .
 - (a) Write α as a product of disjoint cycles.
 - (b) Compute the order of α ; that is, compute $|\alpha|$. (This can be done without doing (a), but it is easier if you do (a).)
- 3. (16 pts.) Let n > 0 be an integer and let G be an abelian group. Define the set G^n by $G^n = \{q^n \mid q \in G\}$.
 - (a) Prove that G^n is a subgroup of G.
 - (b) Let D_3 be the dihedral group of rotations and reflections of an equilateral triangle. Show that $(D_3)^3$ is not a subgroup of D_3 . Hint: What elements of D_3 are in $(D_3)^3$?
- 4. (16 pts.) Let G be the set of complex numbers of absolute value 1. Recall from 20B: (You may find this helpful.) Complex numbers of absolute value 1 in polar coordinates have r=1 and arbitrary angle θ . They can be written as $e^{\theta i}$. Also $e^{2\pi i}=1$ and $e^{ri}e^{si}=e^{(r+s)i}$.
 - (a) Prove that G is a group under multiplication.
 - (b) For all integers n > 0, find a subgroup of G of order n.