- 1. (a) False(b) True(c) False(d) False(e) True(f) False(g) True(h) True(i) False.
- 2. (a) If $a, b \in Z(G)$ and $x \in G$, then xab = axb = xab. Also ax = xa implies $a^{-1}xa^{-1} = a^{-1}xa^{-1}$ and so $xa^{-1} = a^{-1}x$.
 - (b) Suppose $x \in G$. Then $xZ(G) = \{xg \mid g \in Z(G)\} = \{gx \mid g \in Z(G)\} = Z(G)x$.
- 3. When multiplying permutations, odd times odd is even, odd times even is odd and even times even is even. Hence the product of the permutations $\alpha_1, \ldots, \alpha_k$ will be even if and only if the number of $\alpha_1, \ldots, \alpha_k$ which are odd is even. Since a cycle is odd if and only it has even length, this tells us that a product of cycles is even if and only if the number of even length cycles in the product is even.
- 4. The simplest group is D_3 . Let a and b be two different flips. All flips have order 2. Then $ab \neq e$ and ab is a rotation. Hence it has order 3.

Another example is S_n with $n \ge 3$. Then a = (12), b = (13) and ab = (132). In a sense this is the same example since we can view S_3 as a subgroup of S_n and $S_3 \approx D_3$.

5. Since G is abelian $(gh)^k = g^k h^k$ and so $\varphi(gh) = (gh)^k = g^k h^k = \varphi(g)\varphi(h)$.

Challenge: One way is to use the structure theorem for finite abelian groups. Then $\varphi(h_1, \ldots, h_n) = (h_1^k, \ldots, h_n^k)$. This will be an isomorphism if and only if $h_i \mapsto h_i^k$ is a bijection for each *i*. By our study of cyclic groups h^k is a generator of $\langle h \rangle$ if and only if gcd(k, |h|) = 1. In other words, $h_i \mapsto h_i^k$ is a bijection if and only if $gcd(k, |h_i|) = 1$. This holds for all *i* if and only if |G| has no factors in common with k; that is gcd(k, |G|) = 1.

- 6. The possible orders are 1,2,3,4,5,6,7,10,12. The identity has order 1. For k = 2,3,4,5,6,7, a k-cycle has order k. The product of a disjoint 2-cycle and 5-cycle has order 10. The product of a disjoint 3-cycle and 4-cycle has order 12.
- 7. (a) $\mathbb{Z}_{16} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{400}$ (b) $\mathbb{Z}_{16} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \approx \mathbb{Z}_{80} \oplus \mathbb{Z}_5$ (c) $\mathbb{Z}_8 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{200} \oplus \mathbb{Z}_2 \approx \mathbb{Z}_8 \oplus \mathbb{Z}_{50}$ (d) $\mathbb{Z}_8 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \approx \cdots$ (e) $\mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{25} \approx \cdots$ (f) $\mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \approx \cdots$ (g) $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{25} \approx \cdots$ (h) $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \approx \cdots$ (i) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{25} \approx \cdots$
 - (j) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \approx \cdots$
- 8. Let *H* be the set of matrices in *G* of determinant ± 1 . If $A, B \in H$, then $AB^{-1} \in H$ since $\det(AB^{-1} = \det A/\det B = \pm 1$. Hence *H* is a subgroup of *G*. Suppose $C \in G$. Since $\det CAC^{-1} = \det C \det A/\det C = \det A = \pm 1$, $CAC^{-1} \in H$. Thus *H* is normal.

- 9. This was discussed in class, but even if you were not in class, you should have enough knowledge to do it.
 - (a) Since \mathbb{R}^+ is contained in \mathbb{C}^* and is closed under multiplication and taking inverses, it is a subgroup. Every subgroup of an abelian group is normal.
 - (b) $a\mathbb{R}^+$ consists of all points on the half-line starting at the origin (but not including the origin) and passing through a. In other words, it is all points in \mathbb{C}^* having the same arguments as a.
 - (c) If a point in \mathbb{C}^* has polar coordinates (r, θ) , then $r \in \mathbb{R}^+$ and $\theta \in \mathbb{R}/2\pi\mathbb{Z}$. Furthermore, this correspondence between \mathbb{C}^* and pairs of elements (r, θ) is a bijection.

We need to show that the group operations behave correctly. The product two complex numbers with polar coordinates (r_1, θ_1) and (r_2, θ_2) has polar coordinates $(r_1r_2, \theta_1 + \theta_2)$, where $\theta_1 + \theta_2$ is taken modulo 2π . Since we combined r_1 and r_2 (resp. θ_1 and θ_2) using the operation of \mathbb{R}^+ (resp. $\mathbb{R}/2\pi\mathbb{Z}$), we are done.