1. (a) False
(b) True
(c) False
(d) False
(e) True
(f) False
(g) True
(h) True
(i) False.
2. (a) If $a, b \in Z(G)$ and $x \in G$, then $x a b=a x b=x a b$. Also $a x=x a$ implies $a^{-1} x a^{-1}=a^{-1} x a^{-1}$ and so $x a^{-1}=a^{-1} x$.
(b) Suppose $x \in G$. Then $x Z(G)=\{x g \mid g \in Z(G)\}=\{g x \mid g \in Z(G)\}=Z(G) x$.
3. When multiplying permutations, odd times odd is even, odd times even is odd and even times even is even. Hence the product of the permutations $\alpha_{1}, \ldots, \alpha_{k}$ will be even if and only if the number of $\alpha_{1}, \ldots, \alpha_{k}$ which are odd is even. Since a cycle is odd if and only it has even length, this tells us that a product of cycles is even if and only if the number of even length cycles in the product is even.
4. The simplest group is $D_{3}$. Let $a$ and $b$ be two different flips. All flips have order 2 . Then $a b \neq e$ and $a b$ is a rotation. Hence it has order 3.

Another example is $S_{n}$ with $n \geq 3$. Then $a=(12), b=(13)$ and $a b=(132)$. In a sense this is the same example since we can view $S_{3}$ as a subgroup of $S_{n}$ and $S_{3} \approx D_{3}$.
5. Since $G$ is abelian $(g h)^{k}=g^{k} h^{k}$ and so $\varphi(g h)=(g h)^{k}=g^{k} h^{k}=\varphi(g) \varphi(h)$.

Challenge: One way is to use the structure theorem for finite abelian groups. Then $\varphi\left(h_{1}, \ldots, h_{n}\right)=\left(h_{1}^{k}, \ldots, h_{n}^{k}\right)$. This will be an isomorphism if and only if $h_{i} \mapsto h_{i}^{k}$ is a bijection for each $i$. By our study of cyclic groups $h^{k}$ is a generator of $\langle h\rangle$ if and only if $\operatorname{gcd}(k,|h|)=1$. In other words, $h_{i} \mapsto h_{i}^{k}$ is a bijection if and only if $\operatorname{gcd}\left(k,\left|h_{i}\right|\right)=1$. This holds for all $i$ if and only if $|G|$ has no factors in common with $k$; that is $\operatorname{gcd}(k,|G|)=1$.
6. The possible orders are $1,2,3,4,5,6,7,10,12$. The identity has order 1 . For $k=$ $2,3,4,5,6,7$, a $k$-cycle has order $k$. The product of a disjoint 2 -cycle and 5 -cycle has order 10. The product of a disjoint 3 -cycle and 4 -cycle has order 12 .
7. (a) $\mathbb{Z}_{16} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{400}$
(b) $\mathbb{Z}_{16} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \approx \mathbb{Z}_{80} \oplus \mathbb{Z}_{5}$
(c) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{200} \oplus \mathbb{Z}_{2} \approx \mathbb{Z}_{8} \oplus \mathbb{Z}_{50}$
(d) $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \approx \cdots$
(e) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{25} \approx \cdots$
(f) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \approx \cdots$
(g) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{25} \approx \cdots$
(h) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \approx \cdots$
(i) $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{25} \approx \cdots$
(j) $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \approx \cdots$
8. Let $H$ be the set of matrices in $G$ of determinant $\pm 1$. If $A, B \in H$, then $A B^{-1} \in H$ since $\operatorname{det}\left(A B^{-1}=\operatorname{det} A / \operatorname{det} B= \pm 1\right.$. Hence $H$ is a subgroup of $G$. Suppose $C \in G$. Since $\operatorname{det} C A C^{-1}=\operatorname{det} C \operatorname{det} A / \operatorname{det} C=\operatorname{det} A= \pm 1, C A C^{-1} \in H$. Thus $H$ is normal.
9. This was discussed in class, but even if you were not in class, you should have enough knowledge to do it.
(a) Since $\mathbb{R}^{+}$is contained in $\mathbb{C}^{*}$ and is closed under multiplication and taking inverses, it is a subgroup. Every subgroup of an abelian group is normal.
(b) $a \mathbb{R}^{+}$consists of all points on the half-line starting at the origin (but not including the origin) and passing through $a$. In other words, it is all points in $\mathbb{C}^{*}$ having the same arguments as $a$.
(c) If a point in $\mathbb{C}^{*}$ has polar coordinates $(r, \theta)$, then $r \in \mathbb{R}^{+}$and $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$. Furthermore, this correspondence between $\mathbb{C}^{*}$ and pairs of elements $(r, \theta)$ is a bijection.

We need to show that the group operations behave correctly. The product two complex numbers with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ has polar coordinates $\left(r_{1} r_{2}, \theta_{1}+\theta_{2}\right)$, where $\theta_{1}+\theta_{2}$ is taken modulo $2 \pi$. Since we combined $r_{1}$ and $r_{2}$ (resp. $\theta_{1}$ and $\theta_{2}$ ) using the operation of $\mathbb{R}^{+}$(resp. $\mathbb{R} / 2 \pi \mathbb{Z}$ ), we are done.

