- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.

1. (15 pts.) If A is a subset of the complex numbers, let A^{*} be the nonzero numbers in A. Recall that \mathbb{Z} are the integers and \mathbb{Q} are the rationals. Answer the following true or false.
IF FALSE,YOU MUST GIVE A REASON TO RECEIVE CREDIT.
(a) \mathbb{Z}^{*} with multiplication is a subgroup of \mathbb{Q}^{*} with multiplication.
(b) \mathbb{Q}^{*} with multiplication is a subgroup of \mathbb{Q} with addition.
(c) The 2×2 nonsingular matrices over \mathbb{Q} are a group under multiplication.
(d) The odd permutations in S_{9} are a subgroup with the same operation as S_{9}.
(e) If $\alpha \in S_{n}$, then $|\alpha| \leq n$.
2. (12 pts.) Let $\alpha=(1534)(245)$ be an element of S_{5}.
(a) Write α as a product of disjoint cycles.
(b) Compute the order of α; that is, compute $|\alpha|$.
(This can be done without doing (a), but it is easier if you do (a).)
(c) Determine if α is even or odd and give a reason for your answer.
3. (11 pts.) For each subgroup of \mathbb{Z}_{20}, give its order and a generator.
4. (12 pts.) Let G be a group, $a \in G$ and $H \leq G$ (i.e., H is a subgroup of G). Define $a H a^{-1}=\left\{a h a^{-1} \mid h \in H\right\}$.
(a) Prove that $a \mathrm{Ha}^{-1} \leq G$.
(b) Define $\varphi: H \rightarrow a H a^{-1}$ by $\varphi(x)=a x a^{-1}$.

Prove that $\varphi(x y)=\varphi(x) \varphi(y)$.

