1. (a) false. Existence of inverses; for example, 2^{-1}.
(b) false. Must have same operation in group and subgroup.
(c) true.
(d) false. Odd times odd is even. Alternate: the identity is even.
(e) FALSE. Give an example such as $(123)(45) \in S_{5}$, which has order 6 .
2. (a) $\alpha=(152)(34)$
(b) $|\alpha|$ is the least common of its cycle lengths when in disjoint form; that is, $\operatorname{lcm}(3,2)=6$.
(c) It is odd. The parity is the same as the parity of the number of even cycles.
$\begin{array}{cccccccc} & \text { generator } & 0 & 1 & 2 & 4 & 5 & 10 \\ & \text { order } & 1 & 20 & 10 & 5 & 4 & 2\end{array}$
3. (a) Given two elements $X=a x a^{-1}$ and $Y=a y a^{-1}$ with $x, y \in H$, we have

$$
X Y^{-1}=a x a^{-1}\left(a y a^{-1}\right)^{-1}=a x a^{-1}\left(a y^{-1} a^{-1}\right)=a\left(x y^{-1}\right) a^{-1}
$$

This is in $a H a^{-1}$ since $x y^{-1} \in H$ because H is a group.
(b) $\varphi(x) \varphi(y)=a x a^{-1} a y a^{-1}=a x y a^{-1}=\varphi(x y)$.

