- 1. True: (a) (d) (f) False: (b) (c) (e)
- 2. (a) Suppose $x, y \in Z(G)$. Then xg = gx and yg = gy for all $g \in G$ by the definition of the center. Hence $gy^{-1} = y^{-1}g$ and so

$$(xy^{-1})g = xy^{-1}g = xgy^{-1} = gxy^{-1} = g(xy^{-1}).$$

By the definition of Z(G), $xy^{-1} \in Z(G)$.

- (b) Since gz = zg for all $z \in Z(G)$ and all $g \in G$, it follows that gZ(G) = Z(G)g for all $g \in G$.
- 3. Using the convention that 1-cycles are omitted, here are order: example.

 1: e 2: (12)(34) 3: (123) 4: (12)(3456) 5: (12345) 6: (12)(34)(567)

 7: (1234567)
- 4. (a) If G is Abelian, $\phi(gh) = (gh)^2 = g^2h^2 = \phi(g)\phi(h)$. If ϕ is a homomorphism, $\phi(g)\phi(h) = \phi(gh)$ and so $g^2h^2 = (gh)^2 = ghgh$. Multiplying by g^{-1} on the left and h^{-1} on the right, we get gh = hg.
 - (b) Let $g \in G$ have order 2n-1. We have $\phi(g^n) = g^{2n} = g^{2n-1}g = g$. (We did not actually use Abelian.)
- 5. Since K is non-cyclic, its order cannot be a prime. Since |N| = |G|/|K|, the possible values of |N| are $5^3 \times 7$ divided by numbers which are not prime. Thus we have $5 \quad 5^2 \quad 7 \quad 5 \times 7$.
- 6. (a) The identity is 0 and the polynomials with zero derivative are the constants. Hence $\operatorname{Ker} \phi$ is the constants. Given any polynomial p(x), let $q(x) = \int p(x) \, dx$ with any choice for the constant of integration. Then $\phi(q(x)) = p(x)$ and so ϕ is onto.
 - (b) Since the only polynomial mapped to 0 is 0, $\text{Ker } \psi = \{0\}$. It is not onto because polynomials with odd degree terms are not in the image.

This example is interesting because, when G is finite, a larger kernel means a smaller image. In this case, the reverse happened: ϕ has both a larger kernel and a larger image than ψ .

- 7. $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_{5^2}$ $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ $\mathbb{Z}_{2^2} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{5^2}$ $\mathbb{Z}_{2^2} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb$
- 8. Suppose $a, b \in H$ and $g \in GL(n, \mathbb{R})$. Since $\det(a)$ and $\det(b)$ are in K, so is $\det(ab^{-1}) = \det(a)/\det(b)$. Thus H is a subgroup. Since $\det(gag^{-1}) = \det(a) \in K$, it follows that $gag^{-1} \in H$. Thus $gHg^{-1} \subseteq H$ and so H is normal.
- 9. (a) $U = \{e^{i\theta}\}$, where θ is interpreted modulo 2π ; that is, θ is in the $set \mathbb{R}/(2\pi\mathbb{Z})$. Multiplying two elements in U gives $e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$. Hence the group operation in U (multiplication) maps to the group operation in $\mathbb{R}/(2\pi\mathbb{Z})$ (addition).
 - (b) Every non-zero complex number has a unique polar coordinate representation $re^{i\theta}$ where r is a positive real and $\theta \in \mathbb{R}/(2\pi\mathbb{Z})$. Multiplying two such numbers gives addition of the angles (which lie in $\mathbb{R}/(2\pi\mathbb{Z})$) and multiplication of the moduli (which lie in \mathbb{R}^+).