- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.

1. (10 pts.) Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+1\right\rangle$.
(a) How many elements does $R$ contain?
(b) Show that $R$ is not an integral domain.
2. ( 5 pts.) Find all the zero divisors of $\mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$. (Recall that $R \oplus S$ is the set of pairs $(r, s)$ with addition and multiplication done componentwise.)
3. (10 pts.) For $k \in \mathbb{Z}_{n}$, define $\varphi_{k}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by $\varphi_{k}(x)=k x$.
(a) Prove that $\varphi_{k}$ is a ring homomorphism if and only if $k^{2}=k$ in $\mathbb{Z}_{n}$.

Hint: $\varphi_{k}(1 \cdot 1)=\varphi_{k}(1) \varphi_{k}(1)$.
(b) What is the kernel of $\varphi_{4}: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ ?
4. (15 pts.) Let $R$ be a ring. An element of $R$ is called nilpotent if some power of it is zero. (In particular, 0 is nilpotent.) A nonzero $a \in R$ is called a zero divisor if there are nonzero $b$ and $c$ such that $a b=0$ and $c a=0$. (The text only defined zero divisors for commutative rings.)
(a) Prove that every nonzero nilpotent element of a ring is a zero divisor.

Suppose $R$ is a commutative ring and suppose $a, b \in R$ satisfy $a^{n}=0$ and $b^{k}=0$. It can be shown that $(a-b)^{n+k}=0$. (You do NOT need to do this.)
(b) Prove: If $R$ is a commutative ring, then the nilpotent elements of $R$ are an ideal.
(c) It was shown in class that the only ideals in the ring $M_{2}(\mathbb{R})$ of $2 \times 2$ real matrices are the trivial ones $\{0\}$ and $M_{2}(\mathbb{R})$. Use this to show that "commutative" is necessary in (b).
Hint: Look at $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

