- 1. (a) Since $x^2 = -1$ in R, there are just four elements: A, 1 + A, x + A and x + 1 + A, where $A = \langle x^2 + 1 \rangle >$.
 - (b) We can exhibit zero divisors: $(x + 1 + A)^2 = x^2 + 2x + 1 + A = x^2 + 1 + A = A$.

2. Since multiplication is componentwise (r, s) is a zero divisor if and only if r is a zero divisor of \mathbb{Z}_3 or s is a zero divisor of \mathbb{Z}_4 and, in addition, $(r, s) \neq (0, 0)$ Hence the zero divisors are (0, s), (r, 0) and (r', 2), where

- s is any nonzero element of \mathbb{Z}_4 ,
- r is any nonzero element of \mathbb{Z}_3 and
- r' is any element of \mathbb{Z}_3 .

That's enough for full credit. If you want to count them, there are 3 + 2 + 3 - 1 = 7, where the -1 arises because (0, 2) is counted twice, once with s = 2 and once with r' = 0.

- 3. (a) Regardless of the value of k, $\varphi_k(a+b) = k(a+b) = ka+kb = \varphi_k(a) + \varphi_k(b)$. Thus we only need to check multiplication. If $k^2 = k$, $\varphi_k(ab) = kab = kakb = \varphi_k(a)\varphi_k(b)$. Thus $k^2 = k$ is sufficient. To see that it is necessary, use the hint and the fact that $1 \cdot 1 = 1$: We must have $\varphi_k(1)^2 = \varphi_k(1)$. In other words, $k^2 = k$.
 - (b) Just compute $\varphi_4(x)$ for $x \in \mathbb{Z}_6$ and list those x that give 0: $\{0, 3\}$.
- 4. (a) Suppose b is a nonzero nilpotent element. Let n be the smallest power of b that is zero. Since $b \neq 0$, n > 1. Thus $0 = b^n = b^{n-1}b = bb^{n-1}$. Since n is as small as possible, $b^{n-1} \neq 0$ and so b is a zero divisor.
 - (b) Call the set of nilpotent elements N. Suppose $a, b \in N$ and $r \in R$. We must show that a-b, ar and ra all lie in N. The first follows from the remark preceding this part of the problem. If $a^n = 0$, commutativity gives us $(ra)^n = (ar)^n = a^n r^n = 0r^n = 0$ and so we are done.
 - (c) Using the hint and letting c = a + b, note that $a^2 = b^2 = 0$ and $c^2 = I$, the 2×2 identity matrix. Thus a and b are nilpotent but c is not since $c^{2n} = I$ and $c^{2n+1} = c$.