1. $1-2 x$ since $(1+2 x)(1-2 x)=1-4 x^{2}=1$ in $\mathbb{Z}_{4}[x]$.
2. Five, since by looking at $\begin{aligned} & 01000101 \\ & 11110011\end{aligned}$ we see 5 differences. Calling the desired word x, we have $5=d(u, v) \leq d(u, x)+d(x, v) \leq 2+2=4$, a contradiction. Hence there is no such word.
3. The three zeros of $x^{3}-2$ are $a=2^{1 / 3}, b=a \omega$ and $c=a \omega^{2}$ where $\omega=e^{2 \pi i / 3}$. There are many possibilities. Here are three.

- Adjoin any two of them to \mathbb{Q}.
- Adjoin one of them and ω to \mathbb{Q}.
- Adjoin $a+\omega$ to \mathbb{Q}.

The first two are obviously splitting fields. The third is not so clear-but you weren't asked to prove the result.
4. (a) Since $(\sqrt{2}+\sqrt{5})^{2}=7+2 \sqrt{10}$, it follows that $\sqrt{10} \in E$ and so $F \subseteq E$.
(b) Probably the simplest basis to find is $1, \sqrt{2}+\sqrt{5}$; however, there are others such as $1, \sqrt{2}$.
(c) One possibility is $1, \sqrt{2}, \sqrt{5}, \sqrt{10}$.
5. (a) $|F|$ must be a power of p and all powers p^{k} with k a positive integer are possible.
(b) If $[K: F]=n$, then K is a vector space over F of dimension n and so $|K|=|F|^{n}$.
(c) Suppose $|F|=p^{k}$ and $|K|=|F|^{n}=p^{k n}$. By the uniqueness of finite fields (Theorem 22.1), we have $F=\mathrm{GF}\left(p^{k}\right)$ and $K=\mathrm{GF}\left(p^{k n}\right)$. By the subfield theorem (Theorem 22.3), F is a subfield of K.

