- 1. 1 2x since $(1 + 2x)(1 2x) = 1 4x^2 = 1$ in $\mathbb{Z}_4[x]$.

2. Five, since by looking at $\frac{01000101}{11110011}$ we see 5 differences. Calling the desired word x, we have $5 = d(u, v) \le d(u, x) + d(x, v) \le 2 + 2 = 4$, a contradiction. Hence there is no such word.

- 3. The three zeros of $x^3 2$ are $a = 2^{1/3}$, $b = a\omega$ and $c = a\omega^2$ where $\omega = e^{2\pi i/3}$. There are many possibilities. Here are three.
 - Adjoin any two of them to Q.
 - Adjoin one of them and ω to \mathbb{Q} .
 - Adjoin $a + \omega$ to \mathbb{Q} .

The first two are obviously splitting fields. The third is not so clear—but you weren't asked to prove the result.

- 4. (a) Since $(\sqrt{2} + \sqrt{5})^2 = 7 + 2\sqrt{10}$, it follows that $\sqrt{10} \in E$ and so $F \subseteq E$.
 - (b) Probably the simplest basis to find is 1, $\sqrt{2} + \sqrt{5}$; however, there are others such as 1, $\sqrt{2}$.
 - (c) One possibility is 1, $\sqrt{2}$, $\sqrt{5}$, $\sqrt{10}$.
- 5. (a) |F| must be a power of p and all powers p^k with k a positive integer are possible.
 - (b) If [K:F] = n, then K is a vector space over F of dimension n and so $|K| = |F|^n$.
 - (c) Suppose $|F| = p^k$ and $|K| = |F|^n = p^{kn}$. By the uniqueness of finite fields (Theorem 22.1), we have $F = GF(p^k)$ and $K = GF(p^{kn})$. By the subfield theorem (Theorem 22.3), F is a subfield of K.