1. Since it is a splitting field, the extension is Galois, so we can use the fundamental theorem of Galois theory for (a)-(c).
(a) The degree of the extension is the order of the Galois group, which is 8 .
(b) This is equivalent to asking for the number of subgroups of order 2 of $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$. Each element of order 2 generates such a group. The elements of order 2 are $(0,2),(1,0)$ and $(1,2)$. Thus the answer is 3 .
(b) This is equivalent to $[E: K]=4$ and so we need subgroups of order 4. They are

$$
\{0\}+\mathbb{Z}_{4}, \quad\{(0,0),(1,1),(0,2),(1,3)\}, \quad\{(0,0),(0,2),(1,0),(1,2)\}
$$

and so the answer is also 3.
(c) The answer is zero since $[E: K]$ must divide $[E: \mathbb{Q}]=8$.

Alternatively the answer is zero since a group of order 8 cannot have a subgroup of order 3 .
2. (a) Ideals are closed under multiplication by elements of R and by addition. Thus $a_{i} b_{i} \in B$ and the sum of such terms is also in B. Likewise, they are in A and hence in $A \cap B$.
(b) One possibility is $A=B=n \mathbb{Z}$ where $n>1$. Then $A B=n^{2} \mathbb{Z}$ and $A \cap B=A$.
(c) All ideals of \mathbb{Z} are principal. Hence we can write $A=k \mathbb{Z}$ and $B=n \mathbb{Z}$. Now $A B$ consists of all multiples of $k n$ and $A \cap B$ consists of all integers which are multiples of both k and n. Thus $A B=k n \mathbb{Z}$ and $A \cap B=\operatorname{lcm}(k, n) \mathbb{Z}$. Hence there is equality if and only if $k n=\operatorname{lcm}(k, n)$, which can be written as $\operatorname{gcd}(k, n)=1$ if you prefer.
3. (a) Closure: For $A+B$ to be an ideal, it must be closed under subtraction and under multiplication by elements of R. Suppose $a+b \in A+B, a^{\prime}+b^{\prime} \in A+B$ and $r \in R$. Then

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \in A+B \quad \text { and } \quad r(a+b)=r a+r b \in A+B
$$

and A and B are closed under subtraction and multiplication by R.
Associative: $(A+B)+C=\{(a+b)+c \mid a \in A, b \in B, c \in C\}=\{a+(b+$ c) mida $\in A, b \in B, c \in C\}=A+(B+C)$.

Identity: $\{0\}+A=\{0+a \mid a \in A\}=\{a \mid a \in A\}=A$. Likewise $A+\{0\}=A$.
(b) No. This can be seen in many ways. A simple one is to consider the two trivial ideals $\{0\}$ and R and note that since $\{0\}+R=R=R+R$ and so there is no cancelation.
4. An integral domain is a commutative ring with unity and no zero divisors. Every subring of a commutative ring without zero divisors will also be commutative and without zero divisors. Thus it suffices to deal with the unity issue.
Sufficiency: If $1 \in R$, it is a unity for R and so R is an integral domain.

Necessity: Suppose R is an integral domain with unity u. Then $1 u=u$ in D and $u u=u$ in R and hence D. Hence $1 u=u u$ and, by cancelation in an integral domain, $1=u$.
5. Let $F=\mathbb{Q}$ and $R=\mathbb{Z}$.
6. Call the splitting field F. Since $x^{6}+x^{2}+1 \geq 1$ for all real x, it has no real zeros. Hence it has a complex zero. Hence F is larger than \mathbb{R}. Since \mathbb{C} is algebraically closed, F is contained in \mathbb{C}. Since $[\mathbb{C}: \mathbb{R}]=2$, there are no fields between \mathbb{C} and \mathbb{R}. Thus $F=\mathbb{C}$.
7. (a) We must prove that $G \cap H$ is an additive group and that its nonzero elements are a multiplicative group. Suppose $a, b \in G \cap H$. Then $a, b \in G$ and $a, b \in H$. Hence $a-b \in G$ and $a-b \in H$ and so $a-b \in G \cap H$. Similarly, if $b \neq 0, a b^{-1} \in G \cap H$.
(b) Suppose $|G|=p^{n}$ and $|H|=p^{k}$. Then $|G \cap H|=p^{\operatorname{gcd}(n, k)}$.

Justification (which you need not give): Let $G=\operatorname{GF}\left(p^{n}\right)$ and $|H|=\operatorname{GF}\left(p^{k}\right)$. Since $\operatorname{GF}\left(p^{t}\right)$ is a subfield of both if and only if t divides both n and k, the largest possible t is $\operatorname{gcd}(n, k)$.
8. The linear factors of $x^{128}-x$ correspond to the elements of $\mathrm{GF}(2)$ of which there are 2. Hence there are two linear factors.

The zeros of the polynomial are the elements of $\mathrm{GF}\left(2^{7}\right)$, which an extension of degree 7 of $\mathrm{GF}(2)$. If a is the zero of an irreducible factor, $[\operatorname{GF}(2)(a): \operatorname{GF}(2)]$ equals the degree of the factor. Since 7 is prime, the only possible degrees are therefore 1 and 7 . Hence all the factors of the 126-degree polynomial $\frac{x^{128}-x}{x(x-1)}$ are of degree 7 .

