- Please put your name and ID number on your blue book.
- CLOSED BOOK, but BOTH SIDES of one page of notes are allowed.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.
- 1. (18 pts.) Which are TRUE and which are FALSE? Do NOT give reasons.
 - (a) $x^5 + 9x^2 + 3$ is irreducible over $\mathbb{Z}[x]$.
 - (b) For any ring R, $\langle a \rangle = aR$.
 - (c) In an integral domain, every maximal ideal is prime.
 - (d) Every finite integral domain is a field.
 - (e) Every principal ideal domain is a unique factorization domain.
 - (f) If $\varphi : R \to S$ is a ring homomorphism, then $\{x \mid \varphi(x) = 0\}$ is an ideal of S.
- (8 pts.) Let m, n, k be integers greater than 2. Let 1 be the unity of R = Z_m ⊕ Z_n ⊕ Z_k. Prove that x² - 1 has at least eight zeroes in R. Hint: 8 = 2³
- 3. (8 pts.) Let A and B be ideals of a ring R. Prove that the intersection $A \cap B$ is an ideal of R.
- 4. (16 pts.) Let D be an integral domain of characteristic 2. Define $\varphi: D \to D$ by $\varphi(r) = r^2$. Recall: A ring R has characteristic n means $n \cdot r = 0$ for all $r \in R$.
 - (a) Prove that φ is a ring homomorphism.
 - (b) Prove that φ is an injection; that is, $\varphi(a) = \varphi(b)$ implies a = b.

It follows from (a) and (b) that φ is a ring automorphism when D is finite—you don't need to prove that

(c) Prove that φ is *not* a ring automorphism when $D = \mathbb{Z}_2[x]$.