- Please put your name and ID number on your blue book.
- CLOSED BOOK, but BOTH SIDES of one page of notes are allowed.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.

1. (18 pts.) Which are TRUE and which are FALSE? Do NOT give reasons.
(a) $x^{5}+9 x^{2}+3$ is irreducible over $\mathbb{Z}[x]$.
(b) For any ring $R,\langle a\rangle=a R$.
(c) In an integral domain, every maximal ideal is prime.
(d) Every finite integral domain is a field.
(e) Every principal ideal domain is a unique factorization domain.
(f) If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\{x \mid \varphi(x)=0\}$ is an ideal of S.
2. (8 pts .) Let m, n, k be integers greater than 2 . Let 1 be the unity of $R=\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \oplus \mathbb{Z}_{k}$. Prove that $x^{2}-1$ has at least eight zeroes in R.
Hint: $8=2^{3}$
3. (8 pts.) Let A and B be ideals of a ring R. Prove that the intersection $A \cap B$ is an ideal of R.
4. (16 pts.) Let D be an integral domain of characteristic 2 .

Define $\varphi: D \rightarrow D$ by $\varphi(r)=r^{2}$.
Recall: A ring R has characteristic n means $n \cdot r=0$ for all $r \in R$.
(a) Prove that φ is a ring homomorphism.
(b) Prove that φ is an injection; that is, $\varphi(a)=\varphi(b)$ implies $a=b$.

It follows from (a) and (b) that φ is a ring automorphism when D is finite-you don't need to prove that
(c) Prove that φ is not a ring automorphism when $D=\mathbb{Z}_{2}[x]$.

