Math 103B

- 1. True: (a) (c) (d) (e) False: (b) (f)
- 2. If t > 2, ± 1 and -1 are zeroes of $x^2 1$ in *integers*_t. Thus we have at least the eight zeroes obtained by the eight possible sign choices in $(\pm 1, \pm 1, \pm 1)$.
- 3. Suppose $x, y \in A \cap B$ and $r \in R$. Then $x, y \in A$ and $x, y \in B$. Since A is an ideal, $x y \in A$ and also $rx, xr \in A$. Likewise for B. Hence $x y \in A \cap B$ and also $rx, xr \in A \cap B$. Thus $A \cap B$ is an ideal.

Variations are possible. For example, one could replace the x - y statements with: Since the intersection of subgroups is a subgroup, $A \cap B$ is a subgroup under addition.

- 4. I'll use commutativity in D without explicitly mentioning it.
 - (a) We have $\varphi(ab) = a^2b^2 = \varphi(a)\varphi(b)$ and $\varphi(a+b) = a^2 + 2ab + b^2 = \varphi(a) + \varphi(b)$ since 2ab = 0 because D has characteristic 2.
 - (b) Suppose $\varphi(a) = \varphi(b)$. Then $a^2 = b^2$ and so $(a b)^2 = a^2 2ab b^2 + 2b^2 = a^2 b^2 = 0$ Since *D* has no zero divisors and $(a b)^2 = 0$, it follows that a b = 0 and so a = b.

Variations are possible. For example, $a^2 = b^2$ gives us $0 = a^2 - b^2 = (a+b)(a-b)$ and so the lack of zero divisors gives us $a = \pm b$. However, -x = x - 2x = x and so a = b.

(c) The degree of $\varphi(a)$ is always even, hence no polynomials of odd degree are in the image. Aside: In fact the image is precisely $\mathbb{Z}_2[x^2]$ because, as you should be able to prove), $\varphi(p(x)) = p(x)^2 = p(x^2)$.