1. True: (a) (c) (d) (e) False: (b) (f)
2. If $t>2,+1$ and -1 are zeroes of $x^{2}-1$ in integer s_{t}. Thus we have at least the eight zeroes obtained by the eight possible sign choices in $(\pm 1, \pm 1, \pm 1)$.
3. Suppose $x, y \in A \cap B$ and $r \in R$. Then $x, y \in A$ and $x, y \in B$. Since A is an ideal, $x-y \in A$ and also $r x, x r \in A$. Likewise for B. Hence $x-y \in A \cap B$ and also $r x, x r \in A \cap B$. Thus $A \cap B$ is an ideal.
Variations are possible. For example, one could replace the $x-y$ statements with: Since the intersection of subgroups is a subgroup, $A \cap B$ is a subgroup under addition.
4. I'll use commutativity in D without explicitly mentioning it.
(a) We have $\varphi(a b)=a^{2} b^{2}=\varphi(a) \varphi(b)$ and $\varphi(a+b)=a^{2}+2 a b+b^{2}=\varphi(a)+\varphi(b)$ since $2 a b=0$ because D has characteristic 2 .
(b) Suppose $\varphi(a)=\varphi(b)$. Then $a^{2}=b^{2}$ and so $(a-b)^{2}=a^{2}-2 a b-b^{2}+2 b^{2}=$ $a^{2}-b^{2}=0$ Since D has no zero divisors and $(a-b)^{2}=0$, it follows that $a-b=0$ and so $a=b$.
Variations are possible. For example, $a^{2}=b^{2}$ gives us $0=a^{2}-b^{2}=(a+b)(a-b)$ and so the lack of zero divisors gives us $a= \pm b$. However, $-x=x-2 x=x$ and so $a=b$.
(c) The degree of $\varphi(a)$ is always even, hence no polynomials of odd degree are in the image. Aside: In fact the image is precisely $\mathbb{Z}_{2}\left[x^{2}\right]$ because, as you should be able to prove), $\varphi(p(x))=p(x)^{2}=p\left(x^{2}\right)$.
