- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for both sides of two sheets of notes.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.

1. (10 pts.) If R is a ring, define its center $Z(R)$ to be those elements that commute with all elements of R; that is, $Z(R)=\{z \in R \mid z r=r z$ for all $r \in R\}$. Prove that $Z(R)$ is a commutative subring of R.
2. (12 pts.) In the following, we are thinking or \mathbb{R} and \mathbb{Q} as subfields of \mathbb{C}, the complex numbers. Therefore, express your answers as subfields of \mathbb{C}.
(a) Find the splitting field of $\left(x^{2}+1\right)\left(x^{2}+x+1\right)$ over \mathbb{R}.
(b) Find the splitting field of $\left(x^{2}+1\right)\left(x^{2}+x+1\right)$ over \mathbb{Q}.

Remember to explain how you got your answers.
3. (10 pts.) Suppose $E \supset F$ are fields, $[E: F]=n, f(x) \in F[x]$ is irreducible over F and E contains a zero of $f(x)$. What are the possible values for the degree of $f(x)$? Why?
4. (15 pts.) Suppose $E \supset \mathbb{Q}$ is the splitting field of a polynomial over \mathbb{Q}. Further suppose that $\operatorname{Gal}(E / \mathbb{Q}) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$. This group has a total of 8 proper subgroups, all of which are cyclic except for $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. ("Proper" means not the whole group and not the trivial one-element group.)
(a) List all proper subgroups of $\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$ and give their orders.
(b) For all $k>0$, how many subfields F of E are there such that $[E: F]=k$? (Remember E and $\mathbb{Q}!$)
5. (10 pts.) Recall that $\operatorname{GF}\left(p^{n}\right)^{*}$ under multiplication is a cyclic group of order $p^{n}-1$. Let α be a generator for the group. Suppose $\operatorname{GF}\left(p^{k}\right)$ is a subfield of $\operatorname{GF}\left(p^{n}\right)$. Prove that $\operatorname{GF}\left(p^{k}\right)^{*}=\left\langle\alpha^{t}\right\rangle$ for some t and determine the smallest such $t>0$.
6. (15 pts.) Suppose R is a ring such that, if $a \in R$ and $a^{2}=0$, then $a=0$. Suppose $b \in R$ and $b^{n}=0$.
(a) Prove that, if n is a power of two, then $b=0$.
(b) Prove that $b=0$ regardless of whether or not n is a power of 2 .
7. (10 pts.) Let $\pi \in \mathbb{R}$ have its usual meaning. Prove that $\pi+\pi^{-1}$ is algebraic over $\mathbb{Q}\left(\pi^{5}\right)$.
8. (18 pts.) Suppose R, S and T are rings and that $\phi_{s}: R \rightarrow S$ and $\phi_{t}: R \rightarrow T$ are ring homomorphisms. Define $\phi: R \rightarrow S \oplus T$ by $\phi(x)=\left(\phi_{s}(x), \phi_{t}(x)\right)$.
(a) Prove that ϕ is a homomorphism.
(b) Recall that the kernel of a homomorphism is the set of elements that are mapped to zero. Prove that $\operatorname{Ker}(\phi)=\operatorname{Ker}\left(\phi_{s}\right) \cap \operatorname{Ker}\left(\phi_{t}\right)$.
(c) Suppose that I and J are ideals of R and that $R \approx(R / I) \oplus(R / J)$ under that natural mapping $x \rightarrow(x+I, x+J)$. Prove that $I \cap J=\{0\}$.

