- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for both sides of two sheets of notes.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- You must show your work to receive credit.
- 1. (10 pts.) If R is a ring, define its center Z(R) to be those elements that commute with all elements of R; that is, $Z(R) = \{z \in R \mid zr = rz \text{ for all } r \in R\}$. Prove that Z(R) is a commutative subring of R.
- 2. (12 pts.) In the following, we are thinking or \mathbb{R} and \mathbb{Q} as subfields of \mathbb{C} , the complex numbers. Therefore, express your answers as subfields of \mathbb{C} .
 - (a) Find the splitting field of $(x^2 + 1)(x^2 + x + 1)$ over \mathbb{R} .
 - (b) Find the splitting field of $(x^2 + 1)(x^2 + x + 1)$ over \mathbb{Q} .

Remember to explain how you got your answers.

- 3. (10 pts.) Suppose $E \supset F$ are fields, [E:F] = n, $f(x) \in F[x]$ is irreducible over F and E contains a zero of f(x). What are the possible values for the degree of f(x)? Why?
- 4. (15 pts.) Suppose $E \supset \mathbb{Q}$ is the splitting field of a polynomial over \mathbb{Q} . Further suppose that $\operatorname{Gal}(E/\mathbb{Q}) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_6$. This group has a total of 8 proper subgroups, all of which are cyclic except for $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. ("Proper" means not the whole group and not the trivial one-element group.)
 - (a) List all proper subgroups of $\mathbb{Z}_2 \oplus \mathbb{Z}_6$ and give their orders.
 - (b) For all k > 0, how many subfields F of E are there such that [E : F] = k? (Remember E and \mathbb{Q} !)
- 5. (10 pts.) Recall that $GF(p^n)^*$ under multiplication is a cyclic group of order $p^n 1$. Let α be a generator for the group. Suppose $GF(p^k)$ is a subfield of $GF(p^n)$. Prove that $GF(p^k)^* = \langle \alpha^t \rangle$ for some t and determine the smallest such t > 0.

- 6. (15 pts.) Suppose R is a ring such that, if $a \in R$ and $a^2 = 0$, then a = 0. Suppose $b \in R$ and $b^n = 0$.
 - (a) Prove that, if n is a power of two, then b = 0.
 - (b) Prove that b = 0 regardless of whether or not n is a power of 2.
- 7. (10 pts.) Let $\pi \in \mathbb{R}$ have its usual meaning. Prove that $\pi + \pi^{-1}$ is algebraic over $\mathbb{Q}(\pi^5)$.
- 8. (18 pts.) Suppose R, S and T are rings and that $\phi_s : R \to S$ and $\phi_t : R \to T$ are ring homomorphisms. Define $\phi : R \to S \oplus T$ by $\phi(x) = (\phi_s(x), \phi_t(x))$.
 - (a) Prove that ϕ is a homomorphism.
 - (b) Recall that the kernel of a homomorphism is the set of elements that are mapped to zero. Prove that $\operatorname{Ker}(\phi) = \operatorname{Ker}(\phi_s) \cap \operatorname{Ker}(\phi_t)$.
 - (c) Suppose that I and J are ideals of R and that $R \approx (R/I) \oplus (R/J)$ under that natural mapping $x \to (x + I, x + J)$. Prove that $I \cap J = \{0\}$.