- 1. We need to verify that Z(R) is a group under addition and closed under multiplication. Since $z_i \in Z(R)$ implies $(z_1 - z_2)r = z_1r - z_2r = rz_1 - rz_2 = r(z_1 - z_2)$ and $(z_1z_2)r = z_1rz_2 = rz_1z_2 = r(z_1z_2)$, this is true. Furthermore, $z_1z_2 = z_2z_1$ since $z_1 \in Z(R)$ and so Z(R) is commutative.
- 2. Over the complex numbers, the polynomial splits as $(x + i)(x i)(x \omega)(x \omega^2)$, where $\omega = e^{2\pi i/3} = \frac{-1+\sqrt{-3}}{2}$, a third root of unity. None of these roots belong to \mathbb{R} .
 - (a) Since none of these roots belong to \mathbb{R} , one of the roots is *i*, and all roots belong to $\mathbb{C} = \mathbb{R}(i)$, the splitting field is \mathbb{C} .
 - (b) We adjoin i to \mathbb{Q} , but we still don't get ω , hence we must adjoin more. Among the possible answers are

$$\mathbb{Q}(i,\sqrt{3}) = \mathbb{Q}(i,\sqrt{-3}) = \mathbb{Q}(i,\omega) = \mathbb{Q}(i+\omega).$$

- 3. If a is a zero of f(x), then $[F(a):F] = \deg(f)$. Since [F(a):F] must divide [E:F], $\deg(f)$ must divide n.
- 4. (a) The cyclic subgroups are formed by pairing one of $i = 0, 1 \in \mathbb{Z}_2$ with one of $j = 0, 1, 2, 3 \in \mathbb{Z}_6$. Then $\langle (0,0) \rangle$ is the trivial one-element group, $|\langle (0,2) \rangle| = 3$, $|\langle (0,1) \rangle| = |\langle (1,1) \rangle| = |\langle (1,2) \rangle| = 6$, and $|\langle (0,3) \rangle| = |\langle (1,0) \rangle| = |\langle (1,3) \rangle| = 2$. We were given the non-cyclic proper subgroup $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ of order 4.
 - (b) The numbers correspond to subgroup orders. Hence we have

k	1	2	3	4	6	12
#	1	3	1	1	3	1

and for all other k, none.

- 5. We use what we know about cyclic groups. Since $GF(p^k)^*$ is a subgroup of $GF(p^n)^*$ of order $p^k 1$, it is generated by α^t where $t = \frac{p^n 1}{p^k 1}$.
- 6. (a) Write $n = 2^k$ and use induction on k: For k = 0, we are done by assumption (let a = b). For k > 0, $0 = b^b = b^{2^k} = (b^{2^{k-1}})^2$ and so $b^{2^{k-1}} = 0$ by assumption.
 - (b) Suppose $n \leq 2^k$. Since $b^n = 0$, it follows that $b^{2^k} = 0$. By (a), b = 0.
- 7. This can be done in various ways. Here's one. Since π is a zero of $x^5 \pi^5$, $[\mathbb{Q}(\pi) : \mathbb{Q}(\pi^5)] < \infty$ and so everything in $\mathbb{Q}(\pi)$ is algebraic over $\mathbb{Q}(\pi^5)$. Since $\pi + \pi^{-1} \in \mathbb{Q}(\pi)$, we are done.
- 8. (a) Let \star be a ring operation (plus, minus or times). We have

$$\phi(x \star y) = (\phi_s(x \star y), \phi_t(x \star y)) = (\phi_s(x) \star \phi_s(y), \phi_t(x) \star \phi_t(y))$$
$$= (\phi_s(x), \phi_t(x)) \star (\phi_s(y), \phi_t(y)) = \phi(x) \star \phi(y).$$

- (b) Since the zero of $S \oplus T$ is (0,0). The kernel of ϕ is precisely those x such that $\phi_s(x) = 0$ and $\phi_t(x) = 0$. In other words, precisely those x which are in both $\operatorname{Ker}(\phi_s)$ and $\operatorname{Ker}(\phi_t)$.
- (c) To be an isomorphism, the kernel must be $\{0\}$. Let S = R/I and $\phi_s(x) = x+I$ and similarly for T. Now apply (b) and standard properties of ring homomorphisms to conclude that the kernel of the map in (c) is $I \cap J$.