1. We need to verify that $Z(R)$ is a group under addition and closed under multiplication. Since $z_{i} \in Z(R)$ implies $\left(z_{1}-z_{2}\right) r=z_{1} r-z_{2} r=r z_{1}-r z_{2}=r\left(z_{1}-z_{2}\right)$ and $\left(z_{1} z_{2}\right) r=$ $z_{1} r z_{2}=r z_{1} z_{2}=r\left(z_{1} z_{2}\right)$, this is true. Furthermore, $z_{1} z_{2}=z_{2} z_{1}$ since $z_{1} \in Z(R)$ and so $Z(R)$ is commutative.
2. Over the complex numbers, the polynomial splits as $(x+i)(x-i)(x-\omega)\left(x-\omega^{2}\right)$, where $\omega=e^{2 \pi i / 3}=\frac{-1+\sqrt{-3}}{2}$, a third root of unity. None of these roots belong to \mathbb{R}.
(a) Since none of these roots belong to \mathbb{R}, one of the roots is i, and all roots belong to $\mathbb{C}=\mathbb{R}(i)$, the splitting field is \mathbb{C}.
(b) We adjoin i to \mathbb{Q}, but we still don't get ω, hence we must adjoin more. Among the possible answers are

$$
\mathbb{Q}(i, \sqrt{3})=\mathbb{Q}(i, \sqrt{-3})=\mathbb{Q}(i, \omega)=\mathbb{Q}(i+\omega) .
$$

3. If a is a zero of $f(x)$, then $[F(a): F]=\operatorname{deg}(f)$. Since $[F(a): F]$ must divide $[E: F]$, $\operatorname{deg}(f)$ must divide n.
4. (a) The cyclic subgroups are formed by pairing one of $i=0,1 \in \mathbb{Z}_{2}$ with one of $j=0,1,2,3 \in \mathbb{Z}_{6}$. Then $\langle(0,0)\rangle$ is the trivial one-element group, $|\langle(0,2)\rangle|=3$, $|\langle(0,1)\rangle|=|\langle(1,1)\rangle|=|\langle(1,2)\rangle|=6$, and $|\langle(0,3)\rangle|=|\langle(1,0)\rangle|=|\langle(1,3)\rangle|=2$. We were given the non-cyclic proper subgroup $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ of order 4 .
(b) The numbers correspond to subgroup orders. Hence we have

$$
\begin{array}{ccccccc}
k & 1 & 2 & 3 & 4 & 6 & 12 \\
\# & 1 & 3 & 1 & 1 & 3 & 1
\end{array}
$$

and for all other k, none.
5. We use what we know about cyclic groups. Since $\operatorname{GF}\left(p^{k}\right)^{*}$ is a subgroup of $\operatorname{GF}\left(p^{n}\right)^{*}$ of order $p^{k}-1$, it is generated by α^{t} where $t=\frac{p^{n}-1}{p^{k}-1}$.
6. (a) Write $n=2^{k}$ and use induction on k : For $k=0$, we are done by assumption (let $a=b$). For $k>0,0=b^{b}=b^{2^{k}}=\left(b^{2^{k-1}}\right)^{2}$ and so $b^{2^{k-1}}=0$ by assumption.
(b) Suppose $n \leq 2^{k}$. Since $b^{n}=0$, it follows that $b^{2^{k}}=0$. By (a), $b=0$.
7. This can be done in various ways. Here's one. Since π is a zero of $x^{5}-\pi^{5}$, $\left[\mathbb{Q}(\pi): \mathbb{Q}\left(\pi^{5}\right)\right]<\infty$ and so everything in $\mathbb{Q}(\pi)$ is algebraic over $\mathbb{Q}\left(\pi^{5}\right)$. Since $\pi+\pi^{-1} \in \mathbb{Q}(\pi)$, we are done.
8. (a) Let \star be a ring operation (plus, minus or times). We have

$$
\begin{aligned}
\phi(x \star y) & =\left(\phi_{s}(x \star y), \phi_{t}(x \star y)\right)=\left(\phi_{s}(x) \star \phi_{s}(y), \phi_{t}(x) \star \phi_{t}(y)\right) \\
& =\left(\phi_{s}(x), \phi_{t}(x)\right) \star\left(\phi_{s}(y), \phi_{t}(y)\right)=\phi(x) \star \phi(y) .
\end{aligned}
$$

(b) Since the zero of $S \oplus T$ is $(0,0)$. The kernel of ϕ is precisely those x such that $\phi_{s}(x)=0$ and $\phi_{t}(x)=0$. In other words, precisely those x which are in both $\operatorname{Ker}\left(\phi_{s}\right)$ and $\operatorname{Ker}\left(\phi_{t}\right)$.
(c) To be an isomorphism, the kernel must be $\{0\}$. Let $S=R / I$ and $\phi_{s}(x)=x+I$ and similarly for T. Now apply (b) and standard properties of ring homomorphisms to conclude that the kernel of the map in (c) is $I \cap J$.

