- PRINT NAME

- Write version on your blue book and hand in this exam inside your blue book.

VERSION A

- Put your name, ID number, and section number (or time) on your blue book.
- You may have ONE 2-sided page of notes. NO CALCULATORS are allowed.
- You may leave square roots in your answers, but NO trig functions.
- You must show your work to receive credit.

1. (12 points) In this problem,

- \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in \mathbb{R}^{3} (space),
- \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{2} (the plane) and
- s is a scalar.

For each of the following, decide if it makes sense and:

- if it makes sense, describe the answer, for example, "a vector in \mathbb{R}^{3};"
- if it does not make sense, explain why, for example, "cannot add a vector and a scalar."
(a) $s+(\mathbf{a} \cdot \mathbf{w})$
(b) $\mathbf{a} \times \mathbf{b}$
(c) $\mathbf{u} \times \mathbf{v}$
(d) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$

2. (12 points) Let $\mathbf{a}=\mathbf{i}+2 \mathbf{j}$ be a vector in \mathbb{R}^{2}.
(a) Find a vector in \mathbb{R}^{2} the same direction as a that has length 2.
(b) Find a nonzero vector in \mathbb{R}^{2} that is perpendicular to \mathbf{a}.
3. (6 points) A triangle has vertices $A(-1,0,1), B(0,2,1)$ and $C(0,0,4)$. Find its area.
4. (5 points) Find an equation for the plane through the point $(1,2,1)$ which is perpendicular to the vector $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$.

Do NOT leave vectors in your answer.
5. (5 points) Find the distance from the point $(3,2,1)$ to the plane whose equation is $\langle 1,2,-3\rangle \cdot \mathbf{r}=2$. (As usual $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=\langle x, y, z\rangle$.)

