VERSION A

• PRINT NAME .

- Write version on your blue book and hand in this exam inside your blue book.
- Put your name, ID number, and section number (or time) on your blue book.
- You may have ONE 2-sided page of notes. NO CALCULATORS are allowed.
- You may leave square roots in your answers, but NO trig functions.
- You must show your work to receive credit.
- 1. (12 points) In this problem,
 - **a**, **b** and **c** are vectors in \mathbb{R}^3 (space),
 - **u**, **v** and **w** are vectors in \mathbb{R}^2 (the plane) and
 - s is a scalar.

For each of the following, decide if it makes sense and:

- if it makes sense, describe the answer, for example, "a vector in \mathbb{R}^3 ;"
- if it does not make sense, explain why, for example, "cannot add a vector and a scalar."

(a) $s + (\mathbf{a} \cdot \mathbf{w})$ (b) $\mathbf{a} \times \mathbf{b}$ (c) $\mathbf{u} \times \mathbf{v}$ (d) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$

- 2. (12 points) Let $\mathbf{a} = \mathbf{i} + 2\mathbf{j}$ be a vector in \mathbb{R}^2 .
 - (a) Find a vector in \mathbb{R}^2 the same direction as **a** that has length 2.
 - (b) Find a nonzero vector in \mathbb{R}^2 that is perpendicular to **a**.
- 3. (6 points) A triangle has vertices A(-1,0,1), B(0,2,1) and C(0,0,4). Find its area.
- 4. (5 points) Find an equation for the plane through the point (1, 2, 1) which is perpendicular to the vector $2\mathbf{i} \mathbf{j} + \mathbf{k}$. *Do NOT leave vectors in your answer.*
- 5. (5 points) Find the distance from the point (3, 2, 1) to the plane whose equation is $\langle 1, 2, -3 \rangle \cdot \mathbf{r} = 2.$ (As usual $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \langle x, y, z \rangle$.)

END OF EXAM