- PRINT NAME

- Write version on your blue book and hand in this exam inside your blue book.

VERSION B

- Put your name, ID number, and section number (or time) on your blue book.
- You may have ONE 2-sided page of notes. NO CALCULATORS are allowed.
- You may leave square roots in your answers, but NO trig functions.
- You must show your work to receive credit.

1. (12 points) In this problem,

- \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in \mathbb{R}^{2} (the plane),
- \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{3} (space) and
- s is a scalar.

For each of the following, decide if it makes sense and:

- if it makes sense, describe the answer, for example, "a vector in \mathbb{R}^{3};"
- if it does not make sense, explain why, for example, "cannot cross product a vector and a scalar."
(a) $\mathbf{a}+(\mathbf{b} \cdot \mathbf{c})$
(b) $\mathbf{a} \times \mathbf{b}$
(c) $\mathbf{u} \times \mathbf{v}$
(d) $\mathbf{a} \cdot(\mathbf{v} \times \mathbf{w})$

2. (12 points) Let $\mathbf{a}=2 \mathbf{i}+\mathbf{j}$ be a vector in \mathbb{R}^{2}.
(a) Find a vector in \mathbb{R}^{2} the same direction as a that has length 3.
(b) Find a nonzero vector in \mathbb{R}^{2} that is perpendicular to \mathbf{a}.
3. (6 points) A triangle has vertices $A(1,0,-1), B(0,3,-1)$ and $C(3,0,0)$. Find its area.
4. (5 points) Find an equation for the plane through the point $(2,-1,1)$ and is perpendicular to the vector $\langle 1,1,2\rangle$.

Do NOT leave vectors in your answer.
5. (5 points) Find the distance from the point $(1,2,3)$ to the plane whose equation is $(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \cdot \mathbf{r}=3 . \quad$ (As usual $\mathbf{r}=\langle x, y, z\rangle=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

