- 1. (a) This can be done in various ways:
 - Best is to take a value on each side of the (50,15) entry and form the finite difference:

$$w_s(50,15) \approx \frac{47-25}{60-40} = \frac{22}{20}$$
 and $w_t(50,15) \approx \frac{40-29}{20-10} = \frac{11}{10}$.

• Not as good is to take a value at the point and a point on one side (but this is still acceptable):

$$w_s(50,15) \approx \frac{47-36}{60-50} = \frac{11}{10} \text{ or } w_s(50,15) \approx \frac{36-25}{50-40} = \frac{11}{10}$$

and

$$w_t(50, 15) \approx \frac{40 - 36}{20 - 15} = \frac{4}{5} \text{ or } w_t(50, 15) \approx \frac{36 - 29}{15 - 10} = \frac{7}{5}.$$

- (b) The units of w_s are feet per knot and those of w_t feet per hour. If you have singular or plural where you should not (foot, knots, hours), you will still receive credit.
- (c) The answer is $w(50, 15) + w_s(50, 15) \times 1 + w_t(50, 15) \times (-1)$. You should plug in the numbers you got in (a).
- 2. By the chain rule

$$f'(1) = g_x(x(1), y(1))x'(1) + g_y(x(1), y(1))y'(1)$$

= 2 \times 2 + (-1) \times 1 = 3.

- (b) Since $f_{xy} = f_{yx}$, we'll compute f_y first. It is 2xy. Thus $f_{xy} = \partial(2xy)/\partial x = 2y$.
- (c) $|\langle 2,1\rangle| = \sqrt{2^2 + 1^2} = \sqrt{5}$. Thus $\mathbf{u} = \langle 2/\sqrt{5}, 1/\sqrt{5}\rangle$. Since $\nabla f = \langle 2x + 2y, 2x\rangle$, we have $\nabla f(1,0) = \langle 2,2\rangle$ Finally $D_{\mathbf{u}}f(1,0) = \nabla f(1,0) \cdot \mathbf{u} = 6/\sqrt{5}$.
- 3. The gradient is $\langle 4x, 6y, 2z \rangle$, which equals $\langle 4, -6, 8 \rangle$ at (1, -1, 4). Thus the equation of the plane is

$$0 = \langle 4, -6, 8 \rangle \cdot \langle x - 1, y + 1, z - 4 \rangle = 4x - 6y + 8z - 42,$$

which can be rewritten as 2x - 3y + 4z = 21. Any of these forms, including the dot product form, is acceptable.

4. Since we are given the critical points, we only need to compute f_{xx} , f_{xy} , f_{yy} and $D = f_{xx}f_{yy} - (f_{xy})^2$ there.

By the second derivative test, (0,0) is a local minimum and the other two are saddle points.