1. (a) This can be done in various ways:

- Best is to take a value on each side of the $(50,15)$ entry and form the finite difference:

$$
w_{s}(50,15) \approx \frac{47-25}{60-40}=\frac{22}{20} \quad \text { and } \quad w_{t}(50,15) \approx \frac{40-29}{20-10}=\frac{11}{10} .
$$

- Not as good is to take a value at the point and a point on one side (but this is still acceptable):

$$
w_{s}(50,15) \approx \frac{47-36}{60-50}=\frac{11}{10} \quad \text { or } \quad w_{s}(50,15) \approx \frac{36-25}{50-40}=\frac{11}{10}
$$

and

$$
w_{t}(50,15) \approx \frac{40-36}{20-15}=\frac{4}{5} \quad \text { or } \quad w_{t}(50,15) \approx \frac{36-29}{15-10}=\frac{7}{5}
$$

(b) The units of w_{s} are feet per knot and those of w_{t} feet per hour.

If you have singular or plural where you should not (foot, knots, hours), you will still receive credit.
(c) The answer is $w(50,15)+w_{s}(50,15) \times 1+w_{t}(50,15) \times(-1)$. You should plug in the numbers you got in (a).
2. By the chain rule

$$
\begin{aligned}
f^{\prime}(1) & =g_{x}(x(1), y(1)) x^{\prime}(1)+g_{y}(x(1), y(1)) y^{\prime}(1) \\
& =2 \times 2+(-1) \times 1=3 .
\end{aligned}
$$

(b) Since $f_{x y}=f_{y x}$, we'll compute f_{y} first. It is $2 x y$. Thus $f_{x y}=\partial(2 x y) / \partial x=2 y$.
(c) $|\langle 2,1\rangle|=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. Thus $\mathbf{u}=\langle 2 / \sqrt{5}, 1 / \sqrt{5}\rangle$. Since $\nabla f=\langle 2 x+2 y, 2 x\rangle$, we have $\nabla f(1,0)=\langle 2,2\rangle$ Finally $D_{\mathbf{u}} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}=6 / \sqrt{5}$.
3. The gradient is $\langle 4 x, 6 y, 2 z\rangle$, which equals $\langle 4,-6,8\rangle$ at $(1,-1,4)$. Thus the equation of the plane is

$$
0=\langle 4,-6,8\rangle \cdot\langle x-1, y+1, z-4\rangle=4 x-6 y+8 z-42,
$$

which can be rewritten as $2 x-3 y+4 z=21$. Any of these forms, including the dot product form, is acceptable.
4. Since we are given the critical points, we only need to compute $f_{x x}, f_{x y}, f_{y y}$ and $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$ there.

quantity	at (x, y)	at $(0,0)$	at $(\sqrt{2}, 1)$	at $(-\sqrt{2}, 1)$
$f_{x x}$	$2-2 y$	2	0	0
$f_{x y}$	$-2 x$	0	$-2 \sqrt{2}$	$2 \sqrt{2}$
$f_{y y}$	2	2	2	2
D	$4\left(1-y-x^{2}\right)$	4	-8	-8

By the second derivative test, $(0,0)$ is a local minimum and the other two are saddle points.

