- 1. (a) This can be done in various ways:
 - Best is to take a value on each side of the (50,10) entry and form the finite difference:

$$w_s(50,10) \approx \frac{37-21}{60-40} = \frac{16}{20}$$
 and $w_t(50,10) \approx \frac{36-19}{15-5} = \frac{17}{10}$.

• Not as good is to take a value at the point and a point on one side (but this is still acceptable):

$$w_s(50,10) \approx \frac{37-29}{60-50} = \frac{8}{10}$$
 or $w_s(50,10) \approx \frac{29-21}{50-40} = \frac{8}{10}$

and

$$w_t(50, 10) \approx \frac{36 - 29}{15 - 10} = \frac{7}{5}$$
 or $w_t(50, 10) \approx \frac{29 - 19}{10 - 5} = \frac{10}{5}$

- (b) The units of w_s are feet per knot and those of w_t feet per hour. If you have singular or plural where you should not (foot, knots, hours), you will still receive credit.
- (c) The answer is $w(50, 10) + w_s(50, 10) \times (-1) + w_t(50, 15) \times 1$. You should plug in the numbers you got in (a).
- 2. By the chain rule

$$f'(1) = g_x(x(1), y(1))x'(1) + g_y(x(1), y(1))y'(1)$$

= 1 × 1 + (-2) × 3 = -5.

- (b) Since $f_{xy} = f_{yx}$, we'll compute f_x first. It is $3x^2y$. Thus $f_{xy} = \partial(3x^2y)/\partial y = 3x^2$.
- (c) $|\langle 1,2\rangle| = \sqrt{1^2 + 2^2} = \sqrt{5}$. Thus $\mathbf{u} = \langle 1/\sqrt{5}, 2/\sqrt{5}\rangle$. Since $\nabla f = \langle 2x 2y, 2x\rangle$, we have $\nabla f(0,1) = \langle -2,0\rangle$ Finally $D_{\mathbf{u}}f(0,1) = \nabla f(0,1) \cdot \mathbf{u} = -2/\sqrt{5}$.
- 3. The gradient is $\langle 6x, 2y, 4z \rangle$, which equals $\langle 6, -8, 4 \rangle$ at (1, -4, 1). Thus the equation of the plane is

$$0 = \langle 6, -8, 4 \rangle \cdot \langle x - 1, y + 4, z - 1 \rangle = 6x - 8y + 4z - 42,$$

which can be rewritten as 3x - 4y + 2z = 21. Any of these forms, including the dot product form, is acceptable.

4. Since we are given the critical points, we only need to compute f_{xx} , f_{xy} , f_{yy} and $D = f_{xx}f_{yy} - (f_{xy})^2$ there.

quantity	y at (x,y)	at $(0, 0)$	at $(1, \sqrt{2})$	at $(1, -\sqrt{2})$
f_{xx}	-2	-2	-2	-2
f_{xy}	-2y	0	$-2\sqrt{2}$	$2\sqrt{2}$
f_{yy}	2x-2	-2	0	0
D	$4(1-x-y^2)$	4	-8	-8

By the second derivative test, (0,0) is a local maximum and the other two are saddle points.