- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK, but TWO PAGES OF NOTES ARE ALLOWED.
- Calculators are NOT ALLOWED. You need not evaluate binomial coefficients.
- You must show your work to receive credit.

1. In each case, give an example or explain why none exists.
(a) A permutation f of $\{1,2,3,4,5\}$ such that, for some $x \in\{1,2,3,4,5\}, f^{20}(x) \neq x$.
(b) A permutation f of $\{1,2,3,4,5\}$ such that, for every $x \in\{1,2,3,4,5\}, f^{20}(x) \neq x$.
(c) A tree with exactly 10 vertices and exactly 10 edges.
2. In each case, give an example or explain why none exists.
(a) A function $f(n)$ such that $f(n)$ is $O\left(n^{2}\right)$ but $f(n)$ is not $\Theta\left(n^{2}\right)$.
(b) A function $f(n)$ such that $f(n)$ is $O(n \log n)$ but $f(n)$ is not $O\left(n^{2}\right)$.
(c) A probability space (U, P) and two subsets S and T of U such that $P(S)=P(T)=2 / 3$ and $S \neq T$.
3. A fair die is tossed. If n is the value that is seen, define the random variable X by $X=|n-3|$
(a) Compute the probability that $X=k$ for $k=0,1,2,3,4,5,6$.
(b) Compute the mean and variance of X.

Do the arithmetic.
4. The platoon commander knows:

- If the air strike is successful, there is a 60% probability that the ground forces will not encounter enemy fire.
- If the air strike is not successful, there is a 80% probability that the ground forces will encounter enemy fire.
- There is a 70% probability that the air strike will be successful.

Answer the following questions.
(a) What is the probability that the ground forces will not encounter enemy fire?
(b) The ground forces did not encounter enemy fire. What is the probability that the air strike was successful?
5. After being dealt 4 cards, I have 3 of a kind and a 4 th card that has a different face value.
(a) How many such hands of 4 cards are there? (For counting, the order cards are dealt does not matter, only what is in the hand.)
(b) I will be dealt a 5th card. What is the probability that, given the 4 cards I already have, I will end up with a hand that contains either 4 of a kind or a full house?
(A full house is a pair and 3 of a kind.)
6. Prove: If a graph has v vertices and n connected components, then it has at least $v-n$ edges.
Hint: A tree with t vertices has $t-1$ edges.
7. Define a_{n} by $a_{0}=1$ and the recursion $a_{n}=\left(n / a_{n-1}\right)+a_{n-1}$ for $n>0$.

Guess and prove a formula for a_{n}.
Suggestion: To help with your guessing, compute the first few values of a_{n}.
8. The following algorithm computes x^{n} for n a nonnegative integer, where x is a complicated object and MULT is a procedure that multiplies such objects.

```
POW (x,n)
    If (n=0) Return 1
    Else
        Let q}\mathrm{ and r be the quotient and remainder when n is divided by 2.
        // Thus q=n/2 rounded down and r=n-2q, which is 0 or 1.
        y = MULT(x,x)
        z = POW(y,q) // Remark: A recursive call.
        If (r=0) Return z
        Else Return MULT(x,z)
        End if
    End if
End
```

Find a function $T(n)$ so that the number calls of MULT is $\Theta(T(n))$.
Hint: Use the Master Theorem for Recursions.
Theorem (Master Theorem for Recursions) Suppose that there are
(i) numbers N and $0<c<1$,
(ii) a sequence a_{1}, a_{2}, \ldots,
(iii) functions $s_{1}, s_{2}, \ldots, s_{w}$, and T
such that
(a) $T(n)>0$ for all $n>N$ and $a_{n} \geq 0$ for all $n>N$;
(b) $T(n)=a_{n}+T\left(s_{1}(n)\right)+T\left(s_{2}(n)\right)+\cdots+T\left(s_{w}(n)\right)$ for all $n>N$;
(c) a_{n} is $\Theta\left(n^{b}\right)$ for some $b \geq 0$;
(d) $\left|s_{i}(n)-c n\right|$ is $O(1)$ for $i=1,2, \ldots, w$.

Let $d=-\log (w) / \log (c)$. Then

$$
T(n) \text { is } \begin{cases}\Theta\left(n^{d}\right) & \text { if } b<d, \\ \Theta\left(n^{d} \log n\right) & \text { if } b=d, \\ \Theta\left(n^{b}\right) & \text { if } b>d .\end{cases}
$$

