1. (40 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5 pts. incorrect answer -3 pts. no answer 0 pts

- (a) $\emptyset \subseteq \mathcal{P}(\{0,1\})$. (Recall that $\mathcal{P}(S)$ is the set of all subsets of S.)
- (b) $\emptyset \in \mathcal{P}(\{0,1\}).$
- (c) ____ If Σ is an alphabet, $\epsilon \in \Sigma^*$.
- (d) _____ For any language $L, L \circ L \subseteq L^*$.
- (e) _____ If $S \subset \Sigma$ is a finite set, then S is a regular language.
- (f) _____ If R_1 and R_2 are regular expressions, then $R_1 \cap R_2$ is a regular expression.
- (g) If R_1 and R_2 are regular expressions, then there is a regular expression that describes the same language as $R_1 \cap R_2^{\mathcal{R}}$. (Recall that $S^{\mathcal{R}}$ is the reverse of S.)
- (h) _____ If L_1 and L_2 are regular languages, then $L_1 \circ \overline{L_2}$ is a regular language.
- 2. (20 pts.) Let $L = (0^*1^*) \cup (01)^*$.
 - (a) Indicate which of the following strings are in L and which are not in L

 $0011 \quad 1100 \quad 00 \quad 11 \quad 1010.$

(b) Construct an NFA to recognize the language L.

- 3. (20 pts.) Either give an example of each of the following or explain why no example exists.
 - (a) A language that is <u>not</u> recognized by any DFA but is recognized by some NFA.
 - (b) A language that is \underline{not} regular.

4. (20 pts.) If L is a language, define tail $(L) = \{x \mid wx \in L \text{ for some string } w\}$. For example,

$$\operatorname{tail}\left(\{011, 101\}\right) = \{\epsilon, 1, 01, 11, 011, 101\}.$$

Prove the following: If L is regular, then tail (L) is regular. *Hint*: Use NFAs.