Name \qquad ID No. \qquad

There are 125 points total. (At 5 pts. $=1 \%$, the first exam is 20% and this is 25%.)

1. (40 pts.) Indicate whether true or false. Beware of guessing: correct answer +5 pts. \quad incorrect answer -3 pts. no answer 0 pts
(a) ___ Every finite set of strings is a regular language.
(b) ___ If L is a Turing-recognizable language, so is \bar{L}.
(c) __ There are CFLs that Turing machines cannot recognize.
(d) ___ A nondeterministic Turing machine can recognize more languages than a standard Turing machine can.
(e) _ A 2-stack PDA can recognize more languages than a standard 1-stack PDA can.
(f) ___ A 2-tape Turing machine can recognize more languages than a standard 1-tape Turing machine can.
(g) __ There exists a Turing machine that can decide if two context free grammars generate the same language.
(h) ___ There exists a Turing machine which can decide if two DFAs recognize the same language.
2. (25 pts.) Prove: If L is decidable, then $L^{\mathcal{R}}$ is decidable Hint: Make use of the Turing machine that decides L.
3. (36 pts.) Give an example of a language which satisfies each of the following. If it is in the text (including Exercises and Problems), or is a simple modification of one of these, no proof is needed. Otherwise, give a proof.
(a) A CFL which is NOT regular.
(b) A decidable language which is NOT a CFL.
(c) A Turing-recognizable language which is NOT decidable.
4. (24 pts.) Let $L=\left\{w w^{\mathcal{R}} \mid w \in\{0,1\}^{*}\right\}$. Construct either
(i) a context free grammar to generate L or
(ii) a PDA to recognize L.
