There are 125 points total. (At 5 pts. = 1%, the first exam is 20% and this is 25%.)

1. (40 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5pts. incorrect answer -3pts. no answer 0pts

- (a) T Every finite set of strings is a regular language.
- (b) F If L is a Turing-recognizable language, so is \overline{L} .
- (c) F There are CFLs that Turing machines cannot recognize.
- (d) F A nondeterministic Turing machine can recognize more languages than a standard Turing machine can.
- (e) T A 2-stack PDA can recognize more languages than a standard 1-stack PDA can.
- (f) F A 2-tape Turing machine can recognize more languages than a standard 1-tape Turing machine can.
- (g) F There exists a Turing machine that can decide if two context free grammars generate the same language.
- (h) T There exists a Turing machine which can decide if two DFAs recognize the same language.
- 2. (25 pts.) Prove: If L is decidable, then $L^{\mathcal{R}}$ is decidable *Hint*: Make use of the Turing machine that decides L.

Ans. Suppose T_L decides L. Let M be a Turing machine that reverses its input and feeds the result to T_L . The machine M decides $L^{\mathcal{R}}$.

SOLUTIONS TO THE EXAM

- 3. (36 pts.) Give an example of a language which satisfies each of the following. If it is in the text (including Exercises and Problems), or is a simple modification of one of these, no proof is needed. Otherwise, give a proof.
 - (a) A CFL which is NOT regular.
 - (b) A decidable language which is NOT a CFL.
 - (c) A Turing-recognizable language which is NOT decidable.

Ans. There is more than one possible answer to these questions. Here are some possibilities.

- (a) $\{0^n 1^n \mid n \ge 0\}$ or $\{ww^{\mathcal{R}} \mid w \in \{0, 1\}^*\}$
- (b) $\{0^n 1^n 0^n \mid n \ge 0\}$ or $\{ww \mid w \in \{0, 1\}^*\}$
- (c) A_{TM}
- 4. (24 pts.) Let $L = \{ww^{\mathcal{R}}|w \in \{0,1\}^*\}$. Construct either
 - (i) a context free grammar to generate L or

Ans. A simple one is $S \to \epsilon \mid 0S0 \mid 1S1$

(ii) a PDA to recognize L.

Ans. There are 4 states q_0 , q_w , q_R , q_a , with q_0 the start state and q_a the accept state. The rules are

- 1. From q_0 , push \$ and go to q_w .
- 2. From q_w either go to q_R or push the next input symbol.
- 3. From $q_{\mathcal{R}}$ either
 - (a) pop \$ and go to q_a , or
 - (b) if the stack agrees with the next input symbol, pop it and go to $q_{\mathcal{R}}$.