Name _	ID No
	There are 200 points possible.
1. (40	9 pts.) Indicate whether true or false. Beware of guessing:
	correct answer $+5$ pts. incorrect answer -3 pts. no answer 0 pts
(a) If L is a regular language, then \overline{L} must be a regular language.
(b) If L is a context free language, then \overline{L} must be a context free language.
(c	If L is decidable, then \overline{L} must be decidable.
(d) If L is Turing recognizable, then \overline{L} must be Turing recognizable.
(e	Personal computers can recognize languages that Turing machines cannot.
(f	It is possible to build a "universal simulator"; that is, a Turing machine that, when given the description and input for any Turing machine, will be able to simulate that Turing machine on that input.
(g	A language L in NP is "NP-complete" if every other language in NP is polynomial time reducible to L.
(h	We can build a Turing machine that takes as input the description of a 2-stack PDA plus the input to the PDA and decides if the PDA will stop.
`	5 pts.) Do each of the following or explain why you cannot. If you give an example, explain by it is correct.
(a	Two regular languages whose intersection is <i>not</i> regular.
(b) Two context free languages whose intersection is not context free.
(c	A language which is in NP but is <i>not</i> in P.

- 3. (45 pts.) Let the alphabet be $\Sigma = \{0, 1\}$.
 - Let A be set of strings in Σ^* which contain no adjacent ones.
 - Let B be the set of strings in Σ^* which contain an even number of zeros.
 - Let $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

For example, 011000 and 100101 are in C but 01100 and 0100101 are not in C.

(a) Write a regular expression for A.

(b) Prove that B is a regular language.

(c) Prove that C is a regular language.

HINT: You may use the results in (a) and (b) even if you have not done those parts.

4. (20 pts.) Construct a context free grammar for the language generated by the regular expression $(a^* \cup b) \circ (ba^*)^*$.

June 13, 2000

5. (20 pts.) Suppose L and M are Turing-recognizable languages. Prove that $L \cup M$ and $L \cap M$ are Turing-recognizable.

- 6. (30 pts.) Recall that EQ_{CFG} is the set of pairs G_1 , G_2 of CFGs such that G_1 and G_2 generate the same language. It was remarked on page 158 that EQ_{CFG} is not decidable.
 - (a) Let $EQ_{CFG,n}$ be the set of pairs G_1 , G_2 of CFGs such that the languages generated by G_1 and G_2 contain exactly the same strings of length n. Prove that $EQ_{CFG,n}$ is decidable.

 HINT: Use Chomsky normal form.

(b) What is wrong with the following proof that EQ_{CFG} is Turing decidable?

For each n, run $EQ_{CFG,n}$. If $EQ_{CFG,n}$ stops with reject for some n, then reject; otherwise, accept.