Name	ID No
Name	112 110.

There are 200 points possible.

1. (40 pts.) Indicate whether true or false. Beware of guessing:

correct answer +5pts. incorrect answer -3pts. no answer 0pts

- (a) **T** If L is a regular language, then \overline{L} must be a regular language.
- (b) **F** If L is a context free language, then \overline{L} must be a context free language.
- (c) **T** If L is decidable, then \overline{L} must be decidable.
- (d) **F** If L is Turing recognizable, then \overline{L} must be Turing recognizable.
- (e) F Personal computers can recognize languages that Turing machines cannot.
- (f) **T** It is possible to build a "universal simulator"; that is, a Turing machine that, when given the description and input for any Turing machine, will be able to simulate that Turing machine on that input.
- (g) **T** A language L in NP is "NP-complete" if every other language in NP is polynomial time reducible to L.
- (h) **F** We can build a Turing machine that takes as input the description of a 2-stack PDA plus the input to the PDA and decides if the PDA will stop.
- 2. (45 pts.) Do each of the following or explain why you cannot. If you give an example, explain why it is correct.
 - (a) Two regular languages whose intersection is *not* regular.

Ans. Impossible. Regular languages are closed under intersection.

- (b) Two context free languages whose intersection is *not* context free.
- **Ans.** One possibility is $L_1 = \{a^n b^n c^k \mid n, k \geq 0\}$ and $L_2 = \{a^n b^k c^k \mid n, k \geq 0\}$. Then $L_1 \cap L_2 = \{a^n b^n c^n \mid n \geq 0\}$. It was shown in the pumping lemma section that this is not a CFL.
 - (c) A language which is in NP but is *not* in P.
- **Ans.** It can't be done at the present time because it is not known if P=NP. If P=NP, the problem is impossible. If $P\neq NP$, any NP-complete language would work.

- 3. (45 pts.) Let the alphabet be $\Sigma = \{0, 1\}$.
 - Let A be set of strings in Σ^* which contain no adjacent ones.
 - Let B be the set of strings in Σ^* which contain an even number of zeros.
 - Let $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

For example, 011000 and 100101 are in C but 01100 and 0100101 are not in C.

- (a) Write a regular expression for A.
- **Ans.** One possibility is $0^*(100^*)^* \cup (00^*1)^*0^* \cup 1(00^*1)$. Another is $0^*(100^*)^*(\epsilon \cup 1)$.
 - (b) Prove that B is a regular language.
- Ans. It's probably easiest to give a DFA. Let $q_{\rm even}$ be the start state and the accept state. There is one other state called $q_{\rm odd}$. If you see a zero, change from your current state to the other. If you see a one, stay in your current state.
 - (c) Prove that C is a regular language. **HINT**: You may use the results in (a) and (b) even if you have not done those parts.
- Ans. Since regular languages are closed under complementation, intersection and union and since A and B are regular, it follows that C is regular.
- 4. (20 pts.) Construct a context free grammar for the language generated by the regular expression $(a^* \cup b) \circ (ba^*)^*$.

Ans. Here is the simplest solution. The start variable is S. The rules are

$$S \to XY$$
 $X \to A \mid b$ $A \to aA \mid \epsilon$ $Y \to bAY \mid \epsilon$

- 5. (20 pts.) Suppose L and M are Turing-recognizable languages. Prove that $L \cup M$ and $L \cap M$ are Turing-recognizable.
- **Ans.** Let T_L and T_M be Turing machines that recognize L and M. Here is the algorithm for $L \cup M$ (resp. $L \cap M$).

For $k = 1, 2, 3, \dots$:

Simulate T_L and T_M for k steps each.

If either (resp. both) accept then accept.

If both (resp. either) reject then reject.

Note: The last statement is not necessary.

- 6. (30 pts.) Recall that EQ_{CFG} is the set of pairs G_1 , G_2 of CFGs such that G_1 and G_2 generate the same language. It was remarked on page 158 that EQ_{CFG} is not decidable.
 - (a) Let $EQ_{CFG,n}$ be the set of pairs G_1 , G_2 of CFGs such that the languages generated by G_1 and G_2 contain exactly the same strings of length n. Prove that $EQ_{CFG,n}$ is decidable.

 HINT: Use Chomsky normal form.
- Ans. Suppose w is a string of length n. When a grammar is in Chomsky normal form, production of w requires less than 2n applications of rules from the grammar. This tells us that there are only a finite number of possibilities to test to see if G_1 can produce w. Likewise for G_2 . Since there are only a finite number of strings of length n, we are done.
 - (b) What is wrong with the following proof that EQ_{CFG} is Turing decidable?

For each n, run $EQ_{CFG,n}$. If $EQ_{CFG,n}$ stops with reject for some n, then reject; otherwise, accept.

Ans. If the grammars are the same, we will never stop with a reject and so we will run forever as n goes through all positive integer values.