SOLUTIONS

There are 125 points total. (So first exam is 20% and this is 25%.)

1. (45 pts.) Indicate whether true or false. Beware of guessing:
correct answer +5 pts. incorrect answer -3 pts. no answer 0pts
(a) T Every finite set of strings is a CFL.
(b) F The language $\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$ can be recognized by a (1-stack) PDA.
(c) T A PDA with two stacks can recognize more languages than a standard 1-stack PDA.
(d) T If L is Turing-decidable, then \bar{L} is also Turing-decidable.
(e) F A Turing machine with two tapes can recognize more languages than a standard 1-tape Turing machine.
(f) T The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n>0\right\}$ is Turing-recognizable.
(g) $\mathrm{T} \quad L$ is Turing-decidable when L is the set of strings of digits that represent primes; that is, $L=\{2,3,5,7,11,13, \ldots\}$. (n is a prime if its only positive integer divisors are itself and 1.)
(h) T There exists a Turing machine which can decide if two DFAs are equivalent; that is, whether or not they recognize the same language.
(i) F There exists a Turing machine M which can decide if a Turing machine will loop on a given input; that is, M 's input is a description of a machine, say T, and a string, say w, and M accepts the input if T does loop on w and M rejects the input if T does not loop on w.

SOLUTIONS

2. (25 pts.) Prove that, if L and M are CFLs, then so is $L \cup M$.

Ans. Suppose we have context free grammars for L and M with start symbols S_{L} and S_{M} and with no variable symbols in common. Define a new grammar whose start symbol is S and whose rules are $S \rightarrow S_{L} \mid S_{M}$ and union of the rules for L and M. Clearly, when we apply either $S \rightarrow S_{L}$ or $S \rightarrow S_{M}$, from then on we are working either in the grammar for L or in the grammar for M, respectively.

If you'd like a more formal proof: Let $\left(V_{L}, \Sigma_{L}, R_{L}, S_{L}\right)$ be a CFG that generates L and let $\left(V_{M}, \Sigma_{M}, R_{M}, S_{M}\right)$ be a CFG that generates M, where V_{L} and V_{M} are chosen so that they are disjoint and so that $V^{\prime}=V_{L} \cup V_{M}$ is disjoint from $\Sigma=\Sigma_{L} \cup \Sigma_{M}$. Let S be a symbol that is not in V^{\prime} or Σ Let $V=V^{\prime} \cup\{S\}$ and $R=R_{L} \cup R_{M} \cup\left\{S \rightarrow S_{L} \mid S_{M}\right\}$. Consider the CFG (V, Σ, R, S). In a derivation, the first substitution will replace the string S with either S_{L} or S_{M}. In the first case, we can obtain any string in L. In the second case, we can obtain any string in M. Hence the CFG generates $L \cup M$.
3. (30 pts.) Let $L=\left\{a^{n} b c^{n} \mid n \geq 0\right\}$.
(a) Construct a context free grammar to generate the language.

Ans. The start symbol is S. There are only two rules: $S \rightarrow b$ and $S \rightarrow a S c$, which can also be written $S \rightarrow b \mid a S c$.
(b) Construct a PDA to recognize the language.

Ans. It's hard to draw with the software I have, so I'll describe it. The states are q_{1}, \ldots, q_{4}. The start state is q_{1} and the accept state is q_{4}. There is one edge out of q_{1}, labeled $\epsilon: \epsilon \rightarrow \$$ and going to q_{2}. There is a loop from q_{2} to itself labeled $a: \epsilon \rightarrow a$. There is an edge from q_{2} to q_{3} labeled $b: \epsilon \rightarrow \epsilon$. There is a loop from q_{3} to itself labeled $b: a \rightarrow \epsilon$. There is an edge from q_{3} to q_{4} labeled $\epsilon: \$ \rightarrow \epsilon$.
4. (25 pts.) Suppose that both L and \bar{L} are Turing-recognizable. Either (a) prove that L must be Turing-decidable, or (b) give an example of such an L which is not Turingdecidable.

Ans. (b) is impossible and (a) is true. It is the second part of the proof of Theorem 4.16 on pages $167-168$. See the book for details. (You need to have the details on your exam.)

