Name \qquad ID No. \qquad

There are 225 points possible.

1. (30 pts.) Answer briefly in English using a minimum of mathematics.
(a) What is the Church-Turing thesis regarding Turing machines?
(b) How do certificates and verifiers relate the class NP to ordinary Turing machines?
(c) What does " M accepts the string w " mean when M is a nondeterministic automaton or Turing machine?
2. (30 pts.) Write regular expressions for the following when $\Sigma=\{0,1\}$.
(a) $\overline{\left(\Sigma^{*} 1\right)} \cap \overline{\left(1 \Sigma^{*}\right)}$.

Hint: First describe the strings in the language without using "not."
(b) $\{w \mid w$ has an even number of 0 's, or 1's, or both $\}$.
(For example, $\epsilon, 010,110$, and 1010 are in the language, but 01 is not.)
3. (45 pts.) Beware of guessing:
correct answer +5 pts. incorrect answer -3 pts. no answer 0 pts
\qquad A nondeterministic Turing machine can recognize more languages than a standard Turing machine.
\qquad Context free grammars can generate languages that DFAs cannot recognize.
\qquad Context free grammars can generate languages that Turing machines cannot recognize.
___ $\left\{a^{k} b^{k} \mid 0 \leq k \leq 5\right\}$ is a regular language.
__ There are polynomial time algorithms for some NP-complete problems.
\qquad If L is an NP-complete language and M is polynomial-time reducible to L, then M is also an NP-complete language.
\qquad The class of regular languages is closed under complementation.
The class of context-free languages is closed under complementation.
The class of Turing-recognizable languages is closed under complementation.
4. (30 pts.) Construct CFGs that generate the following languages when $\Sigma=\{0,1\}$. (a) $\left\{w w^{\mathcal{R}} \mid w \in \Sigma^{*}\right\}$, where $w^{\mathcal{R}}$ is the reverse of the string w.
(b) $\left\{0^{i} 1^{j} 0^{k} \mid\right.$ where $\left.i+j=k\right\}$.
5. (30 pts.) Construct PDAs that recognize the following languages when $\Sigma=\{0,1\}$.
(a) $\{w \mid w$ contains at least two 1's $\}$.
(b) $\left\{0^{i} 1^{j} 0^{k} \mid\right.$ where $\left.i+k=j\right\}$. Warning: This is not the same language as in $4(\mathrm{~b})$.
6. (30 pts.) $N E Q_{\mathrm{CFG}}$ is the set of pairs G_{1}, G_{2} of CFGs such that G_{1} and G_{2} generate different languages. Prove that $N E Q_{\mathrm{CFG}}$ is Turing-recognizable. That is, prove that you can build a Turing machine that will take two CFGs and accept them if and only if they produce different languages.
Remark: To "build a Turing machine," it is sufficient to give a high level description of an algorithm - you need not give details such as state transitions and tape reading/writing.
Hint: Since CFGs can be put in Chomsky normal form, assume that G_{1} and G_{2} are in Chomsky normal form.
7. (30 pts.) Prove that P (the class of languages decidable in polynomial time) is closed under complementation and union.

