- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK, but you may have a page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.
- 1. Let G = (V, E) where $V = \{0, 1, a, b, A, B\}$ and $E = \{\{0, 1\}, \{0, a\}, \{0, b\}, \{0, A\}, \{0, B\}, \{a, b\}, \{A, B\}\}.$ Sketch the simple graph G and compute its chromatic polynomial.
- 2. Compute the rank of the binary RP-tree shown here. For your information, $b_1 = b_2 = 1$, $b_3 = 2$, $b_4 = 5$, $b_5 = 14$, $b_6 = 42$, and $b_7 = 132$.

Let $S^*(n)$ denote the entire decision tree. Thus $S^*(1) = S(1)$ and $S^*(2)$ has the three leaves AA, AB, and BA.

- (a) **Find** a recursion for s_n , the number of leaves of $S^*(n)$. Remember to include initial conditions.
- (b) **Prove** that the leaves of $S^*(n)$ are sequences of length n and that their order from left to right is alphabetic.
- 4. A binary RP-tree has information stored at each leaf vertex. Each non-leaf vertex may or may not have information stored at it. Let t_n be the number of such trees with information stored at exactly n vertices and let $T(x) = \sum_{n=1}^{\infty} t_n x^n$ be the generating function. The following picture shows some of the nine trees that contribute to t_4 . An empty circle indicates a vertex with no information.

Find a formula for T(x) similar to the formula $B(x) = x + B(x)^2$ we found for binary RP-trees. To receive credit you must justify your formula; that is, explain how you got it.