- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK, but you may have a page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.

1. Let $G=(V, E)$ where $V=\{0,1, a, b, A, B\}$ and

$$
E=\{\{0,1\},\{0, a\},\{0, b\},\{0, A\},\{0, B\}, \quad\{a, b\},\{A, B\}\} .
$$

Sketch the simple graph G and
compute its chromatic polynomial.
2. Compute the rank of the binary RP-tree shown here. For your information, $b_{1}=b_{2}=1, b_{3}=2, b_{4}=5$, $b_{5}=14, b_{6}=42$, and $b_{7}=132$.

3. The local description of a decision tree for constructing sequences of A's and B's is given below. The notation BA $S(n-2)$ means place BA in front of each sequence produced by $S(n-2)$.

Let $S^{*}(n)$ denote the entire decision tree. Thus $S^{*}(1)=S(1)$ and $S^{*}(2)$ has the three leaves AA, AB, and BA.
(a) Find a recursion for s_{n}, the number of leaves of $S^{*}(n)$.

Remember to include initial conditions.
(b) Prove that the leaves of $S^{*}(n)$ are sequences of length n and that their order from left to right is alphabetic.
4. A binary RP-tree has information stored at each leaf vertex. Each non-leaf vertex may or may not have information stored at it. Let t_{n} be the number of such trees with information stored at exactly n vertices and let $T(x)=\sum_{n=1}^{\infty} t_{n} x^{n}$ be the generating function. The following picture shows some of the nine trees that contribute to t_{4}. An empty circle indicates a vertex with no information.

Find a formula for $T(x)$ similar to the formula $B(x)=x+B(x)^{2}$ we found for binary RP-trees. To receive credit you must justify your formula; that is, explain how you got it.

