- 1. Let G = (V, E) where $V = \{0, 1, a, b, A, B\}$ and $E = \{\{0, 1\}, \{0, a\}, \{0, b\}, \{0, A\}, \{0, B\}, \{a, b\}, \{A, B\}\}$. Sketch the simple graph G and compute its chromatic polynomial.
- **A.** We omit the sketch. There are various ways to compute the chromatic polynomial. One can use formulas, but the easiest is to appeal directly to the definition. Given x colors, there are x ways to color vertex 0. There are then x-1 ways to color each of 1, a, and A since they must differ from 0. There are then x-2 ways to color each of b and a. (For example, b must differ from 0 and a, which leaves x-2 colors for it.) By the Rule of Product from Chapter 1, $P_G(x) = x(x-1)^3(x-2)^2$.
- 2. Compute the rank of the binary RP-tree shown here. For your information, $b_1 = b_2 = 1$, $b_3 = 2$, $b_4 = 5$, $b_5 = 14$, $b_6 = 42$, and $b_7 = 132$.

A. Let Let B be the given tree and let $T = \bigwedge$. Then

$$RANK(B) = b_1b_5 + b_2b_4 + RANK(T)b_3 + RANK(T).$$

You can compute RANK(T) or note that T is the second of the two trees counted by b_3 and so has rank 1. Thus the answer is 14 + 5 + 2 + 1 = 22.

3. The local description of a decision tree for constructing sequences of A's and B's is given below. The notation BA S(n-2) means place BA in front of each sequence produced by S(n-2).

Let $S^*(n)$ denote the entire decision tree. Thus $S^*(1) = S(1)$ and $S^*(2)$ has the three leaves AA, AB, and BA.

- (a) **Find** a recursion for s_n , the number of leaves of $S^*(n)$. Remember to include initial conditions.
- **A.** From the pictures, we read off $s_1=2$, $s_2=s_1+1 (=3$, if you wish), and $s_n=s_{n-1}+s_{n-2}$ for $n\geq 3$.

- (b) **Prove** that the leaves of $S^*(n)$ are sequences of length n and that their order from left to right is alphabetic.
- **A.** We prove it by induction on n. For n=1, it is clear from the picture. For n=2, the entire tree has leaves AA, AB, and BA from left to right. Now we use induction for $n\geq 3$. Since A precedes B, the leaves of $AS^*(n-1)$ precede the leaves of $BAS^*(n-2)$ in alphabetic order. The leaves of $S^*(n-1)$ all have length n-1 and are in alphabetic order. Thus the leaves of $AS^*(n-1)$ all have length n and are in alphabetic order. Thus the leaves of $AS^*(n-2)$ all have length n-2 and are in alphabetic order. Thus the leaves of $AS^*(n-2)$ all have length n-2 and are in alphabetic order. Thus the leaves of $AS^*(n-2)$ all have length n-2 and are in alphabetic order. This completes the proof.
- 4. A binary RP-tree has information stored at each leaf vertex. Each non-leaf vertex may or may not have information stored at it. Let t_n be the number of such trees with information stored at exactly n vertices and let $T(x) = \sum t_n x^n$ be the generating function. The following picture shows some of the nine trees that contribute to t_4 . An empty circle indicates a vertex with no information.

Find a formula for T(x) similar to the formula $B(x) = x + B(x)^2$ we found for binary RP-trees. To receive credit you must justify your formula; that is, explain how you got it.

A. A tree of the desired type is either

- (a) a single vertex with information (since it is a leaf and so has information) OR
- (b) a root with information joined to two trees of the same type OR
- (c) a root without information joined to two trees of the same type.

The generating function for a vertex with information is $x^1 = x$ and that for a vertex without information is $x^0 = 1$. Using the Rule of Product in (b) and (c) and the Rule of Sum to combine the results we have

$$T(x) = x + xT(x)^{2} + 1T(x)^{2} = x + (x+1)T(x)^{2}.$$