1. (a) $9 \times 9 \times 8$ since the first digit must not be zero, the second anything except the first, and the third anything but the first two.
(b) With O for odd and E for even, the four possible patterns and the number of 3 -digit numbers having each pattern are

$$
E E O: 4 \times 4 \times 5 \quad E O O: 4 \times 5 \times 4 \quad O E O: 5 \times 5 \times 4 \quad O O O: 5 \times 4 \times 3
$$

The answer is the sum of these. By the way, this is 40×8, somewhat less than half of (a), which is 81×8.
2. Use the formula on page 65 or, if you don't remember it, draw the relevant portion of the decision tree.
(a) $\operatorname{RANK}(7,3,1)=\binom{6}{3}+\binom{2}{2}+\binom{0}{1}=21$.
(b) We use the greedy algorithm method to compute UNRANK(17).

- Since $\binom{6}{3}=20$ and $\binom{5}{3}=10, f(1)=6$ and we have $17-10=7$ left to go.
- Since $\binom{5}{2}=10$ and $\binom{4}{2}=6, f(2)=5$ and we have $7-6=1$ left to go.
- Since $\binom{1}{1}=1, f(3)=2$.

Thus the function is $6,5,2$ in one-line form.

5. Either

(0) n does not appear AND the remaining $n-1$ elements form a k-list, giving the term $1 \times L(n-1, k)$, OR
(1) n appears in one of the k positions AND the remaining $n-1$ elements form a $(k-1)$-list in the remaining $k-1$ positions, giving $k \times L(n-1, k-1)$, OR
(2) n appears in two of the k positions AND the remaining $n-1$ elements form a $(k-2)$-list in the remaining $k-1$ positions, giving $\binom{k}{2} \times L(n-1, k-2)$.
In other words, $a=1, b=k$ and $c=\binom{k}{2}$.

