- 1. (a) $9 \times 9 \times 8$ since the first digit must not be zero, the second anything except the first, and the third anything but the first two.
 - (b) With O for odd and E for even, the four possible patterns and the number of 3-digit numbers having each pattern are

```
EEO: 4 \times 4 \times 5 \quad EOO: 4 \times 5 \times 4 \quad OEO: 5 \times 5 \times 4 \quad OOO: 5 \times 4 \times 3.
```

The answer is the sum of these. By the way, this is 40×8 , somewhat less than half of (a), which is 81×8 .

- 2. Use the formula on page 65 or, if you don't remember it, draw the relevant portion of the decision tree.
 - (a) RANK(7,3,1) = $\binom{6}{3} + \binom{2}{2} + \binom{0}{1} = 21.$
 - (b) We use the greedy algorithm method to compute UNRANK(17).
 - Since $\binom{6}{3} = 20$ and $\binom{5}{3} = 10$, f(1) = 6 and we have 17 10 = 7 left to go.
 - Since $\binom{5}{2} = 10$ and $\binom{4}{2} = 6$, f(2) = 5 and we have 7 6 = 1 left to go.
 - Since $\binom{1}{1} = 1$, f(3) = 2.

Thus the function is 6,5,2 in one-line form.

- 5. Either
 - (0) n does not appear AND the remaining n-1 elements form a k-list, giving the term $1 \times L(n-1,k)$, OR
 - (1) *n* appears in one of the *k* positions AND the remaining n-1 elements form a (k-1)-list in the remaining k-1 positions, giving $k \times L(n-1, k-1)$, OR
 - (2) *n* appears in two of the *k* positions AND the remaining n-1 elements form a (k-2)-list in the remaining k-1 positions, giving $\binom{k}{2} \times L(n-1,k-2)$.

In other words, a = 1, b = k and $c = {k \choose 2}$.