1. (a) The graph is a triangle a, b, c with two additional edges attached at a.
(b) There are three spanning trees. Each tree is obtained by removing exactly one of the edges $\{a, b\},\{a, c\}$. and $\{b, c\}$.
(c) The tree obtained by removing $\{b, c\}$ is not lineal. The other two trees are.
(d) This can be done in various ways. Here's one. Color a (x ways), then color c, d and $e(x-1$ ways each since the only constraint is that they differ from the color of a). Finally, color $b(x-2$ ways since it must differ from both a and $c)$. The answer is $x(x-1)^{3}(x-2)$.
2. We have $G_{0}=G_{1}=x$ and $G_{11}=x^{2}$. Thus $G_{0^{*}}=\frac{1}{1-x}$ and $G_{(11)^{*}}=\frac{1}{1-x^{2}}$. Hence

$$
G_{00^{*}}=\frac{x}{1-x}, \quad G_{00^{*}(11)^{*} 1}=\frac{x}{1-x} \frac{x}{1-x^{2}}, \quad G_{\left(00^{*}(11)^{*} 1\right)^{*}}=\frac{1}{1-\frac{x}{1-x} \frac{x}{1-x^{2}}}
$$

and so

$$
A(x)=\frac{1}{1-\frac{x}{1-x} \frac{x}{1-x^{2}}} \frac{x}{1-x}=\frac{\left(1-x^{2}\right) x}{(1-x)\left(1-x^{2}\right)-x^{2}}=\frac{\left(1-x^{2}\right) x}{1-x-2 x^{2}+x^{3}} .
$$

Thus $P(x)=x\left(1-x^{2}\right)$.
3. Multiply both sides of (1) by the denominator $1-x-2 x^{2}+x^{3}$ and find the coefficient of x^{n} on both sides. Since $P(x)$ is a cubic, we have

$$
a_{n}-a_{n-1}-2 a_{n-2}+a_{n-3}=0
$$

for $n>3$. Rearranging gives the recursion $a_{n}=a_{n-1}+2 a_{n-2}-a_{n-3}$.
4. This can be done using Principle 11.6 or Example 11.27 . The singularity closest to the origin is the smallest root of the denominator of $A(x)$, namely β. We have $A(x)=(1-x / \beta)^{-1} g(x)$ where

$$
g(x)=\frac{P(x)}{-\beta(x-\alpha)(x-\gamma)} \quad \text { and } \quad g(\beta)=\frac{P(\beta)}{\beta(\beta-\alpha)(\gamma-\beta)} .
$$

Thus $A=g(\beta), B=0$ and $C=1 / \beta$.
5. This type of problem was discussed in Example 10.9 and in class. The answer is

$$
\frac{\left[x^{n}\right] A_{y}(x, 1)}{\left[x^{n}\right] A(x, 1)} .
$$

