1. This can be done in various ways. The simplest may be to choose the pair and then the three other cards as follows:
pair face value, pair suits, 3 other face values, the 3 suits.
We get $13 \times\binom{ 4}{2} \times\binom{ 12}{3} \times 4^{3}$.
2. Since $b_{1} b_{5}=14, b_{2} b_{4}=5$ and $b_{3} b_{3}=4$, the left child is a 3 -leaf tree and the right is also a 3 -leaf tree. Since $22-14-5=3=1 b_{3}+1$, each of these trees has rank 1 . In other words, the two 3 -leaf trees are the same. By calculations like the previous, each has a 2-leaf left child and a 1-leaf right child.
3. (a) To construct such trees, for each $k \geq 0$ attach $2 k$ trees to the root. Since the root contributes one vertex, the Rules of Sum and Product and the sum of a geometric series give

$$
T(x)=\sum_{k=0}^{\infty} x(T(x))^{2 k}=\frac{x}{1-T(x)^{2}} .
$$

Clearing of fractions and rearranging gives the formula.
(b) We use the last principle (implicit functions) with $F(x, y)=y^{3}-y+x$. Thus $B=-3 / 2$. Since $F_{y}=3 y^{2}-1$, we must solve $s^{3}-s+r=0$ and $3 s^{2}-1=0$. Thus $s=1 / \sqrt{3}$ and $r=2 / 3 \sqrt{3}$. Hence $C=3 \sqrt{3} / 2$
4. We use the Principle of Inclusion and Exclusion. (You could use a Venn diagram instead.) You can let $S=\{1, \ldots, 419\}$ or $S=1, \ldots, 420$ since 420 , being a multiple of 2 (and also 5 and 7), will be excluded. Let $S=\{1, \ldots, 420\}$, let S_{1} be those which are multiples of $2, S_{2}$ those which are multiples of 5 , and S_{3} those which are multiples of 7 . Thus $S_{1} \cap S_{3}$ are the multiples of 14 and so forth. We have

$$
\begin{array}{ll}
|S|=420\left|S_{1}\right|=420 / 2=210 & \left|S_{2}\right|=420 / 5=84 \\
\left|S_{3}\right|=420 / 7=60 & \left|S_{1} \cap S_{2}\right|=420 /(2 \cdot 5)=42 \\
\left|S_{1} \cap S_{3}\right|=420 /(2 \cdot 7)=30 & \left|S_{2} \cap S_{3}\right|=420 /(5 \cdot 7)=12 \\
\left|S_{1} \cap S_{2} \cap S_{3}\right|=420 /(2 \cdot 5 \cdot 7)=6 . &
\end{array}
$$

Thus the answer is $420-(210+84+60)+(42+30+12)-6=144$. The answer could also have been obtained as $420(1-1 / 2)(1-1 / 5)(1-1 / 7)=6 \times 4 \times 6=144$.
5. This was discussed in class. Number the squares 1 to 16 from left to right, starting with the first row. The cycles are

$$
\begin{aligned}
0^{\circ} & :(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16) \\
90^{\circ} & :(1,13,16,4)(2,9,15,8)(3,5,14,12)(6,10,11,7) \\
180^{\circ} & :(1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9) \\
270^{\circ} & :(1,4,16,13)(2,8,15,9)(3,12,14,5)(6,7,11,10)
\end{aligned}
$$

Thus 0° has 161 -cycles, 180° has 82 -cycles and 90° and 270° each have 44 -cycles. How many ways can we choose cycles to get 4 black squares?

$$
0^{\circ}:\binom{16}{4}=1820, \quad 90^{\circ}: 4, \quad 180^{\circ}:\binom{8}{2}=28, \quad 270^{\circ}: 4 .
$$

Thus the answer is $\frac{1}{4}(1820+4+28+4)=464$.
6. There is no such graph. Suppose G were such a graph. We can construct a spanning tree T for G by removing edges one at a time. Using subscripts to indicate the number of edges, we obtain the sequence $G=G_{25}, G_{24}, G_{23}, G_{22}, G_{21}, G_{20}, G_{19}=T$ since a tree has one less edge than it has vertices. Thus we removed six edges. When an edge e_{i} is removed from G_{i}, it must belong to at least one cycle of G_{i} (since otherwise G_{i-1} would not be connected). Thus, removing e_{i} destroys at least one cycle of G_{i} and hence of G. Since we removed six edges, we must have destroyed at least six cycles of G. Thus G must have at least six cycles.
7. By (a), the initial condition can be written either as $F(1)=1$ or $F(1)=H(1)$. Adding up the moves in (b-d), we have $F(k)+H(n-k)+F(k)$. Since we are told to take the minimum,

$$
F(n)= \begin{cases}1, & \text { if } n=1 \\ \min _{1 \leq k<n}(2 F(k)+H(n-k)), & \text { if } n>1\end{cases}
$$

