1. (a) There are 9 choices for the leftmost digit AND then 9 for the next AND then 8 for the last, giving $9 \times 9 \times 8$.
Stating $9 \times 9 \times 8$ without explanation is sufficient, since it is clear that you've thought about it correctly. On the other hand, it is hard to give partial credit to a wrong answer if it has no explanation.
(b) There are 4 patterns of E (even) and O (odd) that have an odd sum. Remembering that 0 cannot be the first digit and digits must differ, here are the patterns and their counts.

$$
E E O: 4 \times 4 \times 5 \quad E O E: 4 \times 5 \times 4 \quad O E E: 5 \times 5 \times 4 \quad O O O: 5 \times 4 \times 3
$$

The sum of these is the answer. There is no need to carry out the calculations, but if you do, you should get

$$
5 \times 4 \times(4+4+5+3)=5 \times 4 \times 16=320
$$

which is a bit less than half of (a).
2. Using the formula:

$$
\binom{5}{3}+\binom{2}{2}+\binom{0}{1}=11
$$

You could also get this by drawing the decision tree.
3. If $a_{k}=t$, then the first k numbers in the sequence are a strictly increasing list from $t-1$, which is the same as a k-subset of $t-1$. There are $\binom{t-1}{k}$ of these. A similar argument works for the last k. Using the rules of sum and product, we obtain

$$
P(n, k)=\sum_{t=1}^{n}\binom{t-1}{k}^{2}
$$

(This even works for $k=0$.) If you wish, you could start the sum at $t=k+1$ and you could rewrite the sum as

$$
P(n, k)=\sum_{t=k+1}^{n}\binom{t-1}{k}^{2}=\sum_{s=k}^{n-1}\binom{s}{k}^{2} .
$$

