- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK, but you may have a page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.
- 1. (16 pts.) An oriented graph is a simple graph in which each edge has been given a direction. In other words, given vertices x and y with  $x \neq y$ , exactly one of the following is true:
  - There is no edge between x and y.
  - There is an edge from x to y.
  - There is an edge from y to x.

Obtain formulas for

- (a) the number of oriented graphs with vertex set  $\underline{n}$ ; that is, the number of n-vertex oriented graphs;
- (b) the number of n-vertex oriented graphs having exactly k edges.
- 2. (a) (2 pts.) Sketch the simple graph G = (V, E) where

$$V = \{a, b, c, d, e\} \qquad E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{d, e\}\}.$$

- (b) (6 pts.) Compute the chromatic polynomial  $P_G(x)$ .
- (c) (2 pts.) How many ways can G be properly colored if 5 colors are available?
- 3. (24 pts.) There are  $a_n = 2^n$  n-long sequences of zeroes and ones, including the empty sequence, and so  $A(x) = \sum a_n x^n = (1-2x)^{-1}$ . (You do <u>not</u> need to derive this.) Let  $f_n$  be the number of such sequences that do <u>not</u> contain the pattern 11100. Let  $F(x) = \sum f_n x^n$ .
  - (a) Derive either of the two formulas

$$A(x) = F(x) + A(x)x^{5}F(x)$$
  $A(x) = \sum_{t=0}^{\infty} (F(x)x^{5})^{t}F(x).$ 

(Both formulas are correct. Which you derive will depend on how you think about the problem.)

- (b) Using either of the formulas in (a) and the formula for A(x), find polynomials P(x) and Q(x) so that  $F(x) = \frac{P(x)}{Q(x)}$ ; for example, F(x) might be  $\frac{7}{23-x^9}$ .
- (c) Using (b) or otherwise, obtain a simple recursion for  $f_n$  for  $n \geq 5$ . Don't worry about initial conditions.

## Final Exam in Center 113