- Please put your name and ID number on your blue book.
- CLOSED BOOK, but you may have TWO PAGES of notes.
 Calculators are NOT allowed.
 You need not simplify the arithmetic in your answers.

- You must show your work to receive credit.
- 1. (8 pts.) In each case, give an example or explain why none exists.
 - (a) A permutation f of $\{1, 2, 3, 4, 5\}$ such that f^{20} is not the indentity permutation. (The identity permutation is the function q such that q(x) = x for all x in the domain.)
 - (b) A simple graph with 5 vertices and 12 edges.
- 2. (16 pts.) Committees are to be formed from 5 Democrats and 8 Republicans. A committee must be as balanced as possible; that is, the number of Republicans and Democrats on the committee must be as equal as possible.
 - (a) How many ways can a 7 member committee be formed?
 - (b) How many ways can both a 7 member committee and a 5 member committee be formed if no person can be on both committees?
- 3. (16 pts.) A square table has two seats on each side for a total of eight seats. Rotations of the table don't matter. Thus, if $1, 2, \ldots, 8$ are placed around the table,

- (a) How many ways can eight people be seated at the table?
- (b) We have four identical red chairs and four identical blue chairs. How many ways can the eight chairs be placed around the table?
- 4. (8 pts.) Find the 7-leaf complete binary RP-tree of rank 60. Here are the numbers of trees with various leaves:

$$b_1 = b_2 = 1,$$
 $b_3 = 2,$ $b_4 = 5,$ $b_5 = 14,$ $b_6 = 42,$ $b_7 = 132.$

5. (8 pts.) The chromatic polynomial of an *n*-vertex tree T is $P_T(x) = x(x-1)^{n-1}$. How many ways can a 5-vertex tree be properly colored using 4 colors if every color must be used? Your answer should be a number, but you don't need to simplify the arithmetic.

6. (8 pts.) Let a_n be the number of partitions of an n-set in which the blocks are ordered. It is known that

$$\sum_{n=1}^{\infty} a_n \frac{x^n}{n!} = \frac{1}{2 - e^x}.$$

It can be shown that $a_n/n! \sim AC^n$ for some constants A and C. Find C. Note: You are not asked to prove any of the preceding — just find C and explain how you got it.

- 7. (16 pts.) Consider unlabeled RP-trees where each non-leaf vertex must have either two or three children. Let t_n be the number of such trees with n leaves (with $t_0 = 0$) and let $T(x) = \sum t_n x^n$.
 - (a) Derive the formula $T(x)^3 + T(x)^2 T(x) + x = 0$.
 - (b) It turns out that $t_n \sim A n^B C^n$ for some constants A, B and C. Find B and C. (Your answers should be actual numbers, not descriptions of how to find them.)

Principle 11.6 (Nice singularities, shortened) Let a_n be a sequence whose terms are positive for all sufficiently large n. Suppose that $A(x) = \sum_n a_n x^n$ converges for some value of x > 0. Suppose that A(x) = f(x)g(x) + h(x) where

- $f(x) = (1 x/r)^c$, c is not a positive integer or zero;
- $g(r) \neq 0$ and g(x) does not have a singularity at x = r;
- A(x) does not have a singularity for $-r \le x < r$;
- h(x) does not have a singularity at x = r.

Then it is usually true that

$$a_n \sim \frac{g(r)(1/r)^n}{n^{c+1}\Gamma(-c)}$$

where

$$\Gamma(k) = (k-1)!$$
 when $k > 0$ is an integer, $\Gamma(x+1) = x\Gamma(x)$ and $\Gamma(1/2) = \sqrt{\pi}$.

Principle 11.7 (Implicit functions) Let a_n be a sequence whose terms are positive for all suffciently large n. Let A(x) be the ordinary generating function for the a_n 's. Suppose that the function F(x,y) is such that F(x,A(x))=0. If there are positive real numbers r and s such that F(r,s)=0 and $F_y(r,s)=0$ and if r is the smallest such r, then it is usually true that

$$a_n \sim \sqrt{\frac{rF_x(r,s)}{2\pi F_{yy}(r,s)}} n^{-3/2} r^{-n}.$$