- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.
- 1. (10 pts.) Prove that the number of ordered lists without repeats (including the empty list) that can be constructed from an n-set is nearly n! e.

Hint: By Taylor's theorem, e is nearly $1 + 1/1! + 1/2! + 1/3! + \cdots + 1/n!$.

2. (10 pts.) For each of the following,

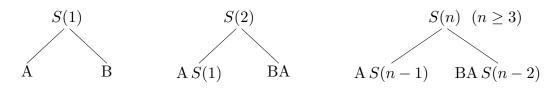
sequence produced by S(n-2).

EITHER give an example of the thing that is described

OR explain why none exists.

- (a) A surjection from $\{1, 2, 3\}$ to $\{a, b, c, d\}$.
- (b) An injection from $\{1, 2, 3\}$ to $\{a, b, c, d\}$.
- (c) A permutation f of $\{1, 2, 3, 4, 5\}$ such that f^{40} is NOT the identity function and $f^{40} \neq f$. Also, if you find such an f, compute f^{40} .

 Remember that the identity function is the function g such that g(x) = x for all x and $f^{40}(x)$ is $f(f(\cdots f(x)))$, not $(f(x))^{40}$.
- 3. (10 pts.) The local description of a decision tree for constructing sequences of A's and B's is given below. The notation BA S(n-2) means place BA in front of each



Let $S^*(n)$ denote the entire decision tree. Thus $S^*(1) = S(1)$ and $S^*(2)$ has the three leaves AA, AB, and BA.

- (a) Obtain a recursion, with initial conditions for the number of leaves of $S^*(n)$. To obtain credit, you must explain how you got the recursion.
- (b) Prove that each leaf of $S^*(n)$ is an *n*-long sequence of A's and B's.
- 4. (10 pts.) A k-part partition of n is a k-multiset of positive integers whose sum is n. For example the 2-part partitions of 6 are $\{1,5\}$, $\{2,4\}$ and $\{3,3\}$.
 - (a) Prove that there are exactly m 2-part partitions of 2m when m > 0.
 - (b) State and prove a formula for the number of 2-part partitions of 2m + 1 when m > 0. Hint: If you do not see the formula right away, list the partitions for m = 1, m = 2 and maybe m = 3.