1. (a) We'll do this in three different ways.
(i) Count the number of rearrangements of $1,2, \ldots, 8$ in two ways: First there are 8!. Second, seat people at a table, pick a side, and read off a list starting at that side and going clockwise around the table. Thus $8!=$ (answer) $\times 4$, giving $8!/ 4$.
(ii) Designate a first person. Place that person on one side of the table (2 possible seats) and then arrange the remaining 7 people, giving 2×7 !.
(iii) Use Burnside's Lemma. The rotations are $0^{\circ}, 90^{\circ}, 180^{\circ}$ and $270^{\circ} . N\left(0^{\circ}\right)=8$! and, since all the people are different, $N\left(r^{\circ}\right)=0$ for $r \neq 0$. Thus we have $\frac{1}{4}(8!+0+0+0+0)$.
(b) This could be done in various ways. The easiest is to use Burnside's Lemma. Call positions around the table $1,2, \ldots, 8$ reading clockwise as shown in the first picture in the exam problem. The group elements in cycle form are

$$
\begin{array}{rr}
\text { no rotation: }(1)(2)(3)(4)(5)(6)(7)(8) & 90^{\circ} \text { rotation: }(1,3,5,7)(2,4,6,8) \\
180^{\circ} \text { rotation: }(1,5)(3,7)(2,6)(4,8) & 270^{\circ} \text { rotation: }(1,7,5,3)(2,8,6,4)
\end{array}
$$

Since chairs must be the same (color) on a cycle, we choose which cycles should have red chairs, getting the answer

$$
\frac{1}{4}\left[\binom{8}{4}+\binom{2}{1}+\binom{4}{2}+\binom{2}{1}\right]=\frac{70+2+6+2}{4}=20
$$

The other way is to attempt to list all 20 solutions, but it is very easy to omit a solution or count it twice.
2. (a) There are $N=\binom{n}{2}$ possible edges. Since we must choose q of them, the answer is $\binom{N}{q}$.
(b) Since the vertices in S cannot be used, there are $M=\binom{n-|S|}{2}$ possible edges and the answer is $\binom{M}{q}$.
(c) Use (b) and the Principle of Inclusion and Exclusion.
3. There is no such graph. Suppose G were such a graph. We can construct a spanning tree T for G by removing edges one at a time. Using subscripts to indicate the number of edges, we obtain the sequence $G=G_{25}, G_{24}, G_{23}, G_{22}, G_{21}, G_{20}, G_{19}=T$ since a tree has one less edge than it has vertices. Thus we removed six edges. When an edge e_{i} is removed from G_{i}, it must belong to at least one cycle of G_{i} (since otherwise G_{i-1} would not be connected). Thus, removing e_{i} destroys at least one cycle of G_{i} and hence of G. Since we removed six edges, we must have destroyed at least six cycles of G. Thus G must have at least six cycles.
4. Apply Principle 11.7 with $F(x, y)=x\left(e^{y}-y\right)-y$. Thus we must solve the pair of equations

$$
F(r, s)=r\left(e^{s}-s\right)-s=0 \quad \text { and } \quad F_{y}(r, s)=r\left(e^{s}-1\right)-1=0
$$

Multiply the second by s and subtract the first to obtain $r s e^{s}-r e^{s}=0$. Thus $s=1$ and, by either the first or second displayed equation, $r=(e-1)^{-1}$. Hence we have $t_{n} / n!\sim A n^{-3 / 2}(e-1)^{n}$.
5. (a) Let the amount of work be w_{n}. From the local description $w_{1}=1$ and $w_{n}=$ $2 w_{n-1}+n$ when $n>1$. With the condition that $w_{n}=0$ for $n \leq 0$, we can combine these into one recursion: $w_{n}=2 w_{n-1}+n$ when $n \geq 0$.
(b) One way to do this is to obtain the generating function and expand it. Here is the result, without details:

$$
W(x)=\frac{x}{(1-x)^{2}(1-2 x)}=\frac{2}{1-2 x}-\frac{1}{(1-x)^{2}}-\frac{2}{1-x}
$$

and so $w_{n}=2^{n+1}-n-2$.
Another approach is to prove the formula by induction using the recursion. It is easily checked when $n=1$. For $n>1$,

$$
2 w_{n-1}+n=2\left(2^{n}-(n-1)-2\right)=2^{n+1}-2 n-2 .
$$

6. A tree is either a single vertex OR two trees joined to a root OR three trees joined to a root, except that we cannot have all tree be non-leaves. Thus we have

$$
T(x)=x+T(x)^{2}+T(x)^{3}-S(x),
$$

where $S(x)$ is the situation in which three trees, none of which are leaves, are joined to a root. Since the generating function for trees which are not leaves is $T(x)-x$, we have $S(x)=(T(x)-x)^{3}$.

