1. ${\underset{2}{1},}_{1,1_{0}, 3}^{4}$ You can use theorems, but it is probably easiest to color 0 (x ways), then color 1,3 and 5 ($x-1$ ways each since each must differ from 0) and finally color 2 and 4 ($x-2$ ways each since each must differ from two differently colored vertices- 0 and 1 or 0 and 3). This gives $x(x-1)^{3}(x-2)^{2}$.
2. (a) Use induction. True for $n=1$ and $n=2$ by inspection. For $n>2$, the left (resp. right) tree has leaves of length $1+(n-1)($ resp. $2+(n-2))$.
(b) It is evident that no leaf has adjacent B's since we either prepend A or BA. To see that every such sequence arises, use induction. It's true for lengths 1 and 2 by inspection. For $n>2$, the sequence must begin either A or BA and then is followed by any sequence with no adjacent B's. By the induction hypothesis for $n-1$ and n all such sequences occur in $S^{*}(n-1)$ and $s^{*}(n-2)$.
3. (a) We have $\left(1-x-2 x^{2}\right) A(x)=x$. Equating coefficients of x^{n}, we have

$$
a_{n}-a_{n-1}-2 a_{n-2} \text { equals } 3 \text { if } n=1 \text { and } 0 \text { otherwise. }
$$

Treating $n \leq 1$ as initial conditions, this gives us

$$
a_{0}=0, \quad a_{1}=3, \quad a_{n}=a_{n-1}+2 a_{n-2} \quad \text { for } n \geq 2 .
$$

Alternatively, introducing $c_{n}=0$ except that $c_{1}=3$ gives us

$$
a_{n}=a_{n-1}+2 a_{n-2}+c_{n} \text { for all } n .
$$

(As usual, a_{n} is assumed zero for negative n.)
(b) Since $1-x-2 x^{2}=(1-2 x)(1+x)$, partial fractions gives us

$$
A(x)=\frac{b}{1-2 x}+\frac{c}{1+x}=\sum b(2 x)^{n}+\sum c(-x)^{n}=\sum\left(b 2^{n}+c(-1)^{n}\right) x^{n} .
$$

Thus $a_{n}=b 2^{n}+c(-1)^{n}$. You can find $b=1$ and $c=-1$ either by the usual partial fraction route or by solving the two equations $0=a_{0}=b+c$ and $3=2 b-c$.
4. Each such tree is either a single vertex $(x y)$ OR a root (x) joined to two trees $\left(T(x, y)^{2}\right)$ OR a root joined to four trees, etc. Thus we have

$$
T(x, y)=x y+\sum_{\substack{k \geq 1 \\ k \text { even }}} x(T(x, y))^{k}=x y+\frac{x(T(x, y))^{2}}{1-(T(x, y))^{2}}
$$

