1. (6 pts.) Recall that a cycle of a simple graph is a subgraph consisting of some set $\left\{v_{1}, \ldots, v_{k}\right\}$ of vertices together with the k edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{k}, v_{1}\right\}$.

- It follows from Exercise 5.5.3 that a connected v-vertex graph that has at least one cycle has at least v edges. (You are not asked to do that.)
- It can be shown that a connected v-vertex graph that has at least two cycles has at least $v+1$ edges. (You are not asked to do that.)
One might expect the pattern to continue: at least k cycles implies at least $v+k-1$ edges.
Show that this doesn't happen by exhibiting for some v a connected v-vertex simple graph with more than two cycles and only $v+1$ edges. Be sure to describe the cycles!

2. (a) (8 pts.) How many ways are there to form an ordered/list of 3 (three) letters from the letters in LAJOLLA (3 L's, 2 A's, 1 J , and 1 O), provided no letter can be used more often than it appears in LAJOLLA?
(b) (8 pts.) Repeat the above for 7 (seven) letters (i.e., use all the letters).
3. A partition of a positive integer is an unordered list of positive integers whose sum is the given integer. For example, the 7 partitions of 5 are
$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+2+1, \quad 2+1+1+1, \quad 1+1+1+1+1$.
Let $p_{k}(n)$ be the number of partitions of n with exactly k summands. For example,

$$
p_{1}(5)=1, \quad p_{2}(5)=2, \quad p_{3}(5)=2, \quad p_{4}(5)=1, \quad p_{5}(5)=1
$$

(a) (6 pts.) Compute $p_{2}(n)$ for $2 \leq n \leq 7$. Use this to conjecture a formula for $p_{2}(n)$ for all n.
(b) (8 pts.) Prove the formula for $p_{2}(n)$ that was conjectured in (a).

