1. Of course, there are an infinite number of possible examples. The smallest simple graph with the desired property is given by

$$
V=1,2,3,4 \quad \text { and } \quad E=\{\{1,2\},\{2,3\},\{3,4\},\{4,1\},\{1,3\}\}
$$

It has $v=|V|=4$ and $|E|=5=v+1$, and it contains the three cycles whose vertices (in order) are (a) $1,2,3,4$, (b) $1,2,3$, and (c) $1,4,3$.

For those who may be interested, it is well known in graph theory circles that a simple graph with v vertices and $v+k-1$ edges contains at most $2^{k}-1$ cycles. In fact, such a graph contains precisely that many "generalized" cycles, where a generalized cycle is a nonempty union of edge-disjoint cycles.
2. (a) The answer is 43 . Here's one way to do it: Consider cases according to the number of repeated letters:

- For no repeated letters, there are $4 \times 3 \times 2=24$ possibilities.
- For two repeated letters, choose the repeat from A and L, AND choose the other letter from the three remaining, AND choose the position for that letter, giving $2 \times 3 \times 3=18$.
- The only way to get a letter 3 times is with LLL.
(b) The answer is 420 . Here's one way to do it: If we distinguish among the 3 L's and 2 A's, each original list gives rise to $3!\times 2!=12$ lists because of the ways to label the L's ($\mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{3}, say) and the A's. Since the number of lists will all letters distinct is $7!=5040$, the answer is $5040 / 12=420$.

Here's another way to do it: Choose a position for J, AND, from the remaining 6 positions, choose one for O, AND, from the remaining 5 positions, choose 2 positions for the A's. This gives $7 \times 6 \times\binom{ 5}{2}=420$ ways.
3. (a) Here's the computation:

$$
\begin{array}{lll}
p_{2}(2)=1 & \text { from } & 1+1 \\
p_{2}(3)=1 & \text { from } & 2+1 \\
p_{2}(4)=2 & \text { from } & 3+1,2+2 \\
p_{2}(5)=2 & \text { from } & 4+1,3+2 \\
p_{2}(6)=3 & \text { from } & 5+1,4+2,3+3 \\
p_{2}(7)=3 & \text { from } & 6+1,5+2,4+3
\end{array}
$$

It looks like $p_{2}(n)$ is $n / 2$ rounded down. In other words, $p_{2}(n)=[n / 2]$, where $[x]$ is the largest integer not exceeding x. In still other words,

$$
p_{2}(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (n-1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

(b) Let $n=j+k$ be a partition of n. If $j \geq k$, then $n \geq k+k=2 k$ and so $k \leq n / 2$. On the other hand, if $k \leq n / 2$, then $j=n-k \geq n / 2$ and so $j \geq k$. We have just shown that $j \geq k$ if and only if $k \leq n / 2$. Thus k can be any of the positive integers that do not exceed $n / 2$, which yields the formula given in (a).

