- 1. Calculate the number of 6 card hands that contain
 - (a) two 3-of-a-kind; e.g., 3 eights and 3 jacks;
 - (b) two pair, but not three pair or 3 of a kind.
- 2. Give an example of each of the following, or explain why no such example can exist.
 - (a) An ordered list of length 5 with *no repeats* chosen from a set of 4 elements.
 - (b) A 5 vertex, 5 edge simple graph that is not connected.
 - (c) A 4 vertex, 10 edge simple graph that is connected.
- 3. Recall that a simple graph with vertices V is (V, E) where the edges E are a set chosen from $\mathcal{P}_2(V)$ and a simple directed graph (V, E) has edges chosen form $V \times V$.
 - (a) A simple multigraph with vertices V is (V, E) where the edges E are a multiset chosen from $\mathcal{P}_2(V)$. Prove that the number of simple multigraphs with vertices $V = \{1, \ldots, n\}$ and q edges is $\binom{N+q-1}{q}$ where $N = \binom{n}{2}$.
 - (b) A simple directed multigraph with vertices V is (V, E) where the edges E are a multiset chosen from $V \times V$. Find and prove a formula for the number of simple directed multigraphs with vertices $V = \{1, 2, ..., n\}$ and q edges.
- 4. A partition of a positive integer is an unordered list of positive integers whose sum is the given integer. For example, the 7 partitions of 5 are

1+1+1+1+1, 2+1+1+1, 2+2+1, 3+1+1, 3+2, 4+1, 5.

Let $q_k(n)$ be the number of partitions of n whose largest summand is at most k. For example,

$$q_1(5) = 1$$
, $q_2(5) = 3$, $q_3(5) = 5$, $q_4(5) = 6$, $q_5(5) = 7$.

It is easily seen that $q_1(n) = 1$ for all $n \ge 1$ since the only partition with largest summand at most 1 is $1 + \cdots + 1$.

- (a) Give as simple as possible description of the set of partitions counted by $q_k(n) q_{k-1}(n)$. Your description should refer to the largest part in a partition.
- (b) Prove the recursion $q_k(n) = q_{k-1}(n) + q_k(n-k)$. You need not give initial conditions or state how large n and k must be in the recursion. (With the initial conditions $q_k(0) = 1$ and $q_k(n) = 0$ for n < 0, the recursion holds for $n \ge 1$.)