1. Calculate the number of 6 card hands that contain
(a) two 3 -of-a-kind; e.g., 3 eights and 3 jacks;
(b) two pair, but not three pair or 3 of a kind.
2. Give an example of each of the following, or explain why no such example can exist.
(a) An ordered list of length 5 with no repeats chosen from a set of 4 elements.
(b) A 5 vertex, 5 edge simple graph that is not connected.
(c) A 4 vertex, 10 edge simple graph that is connected.
3. Recall that a simple graph with vertices V is (V, E) where the edges E are a set chosen from $\mathcal{P}_{2}(V)$ and a simple directed graph (V, E) has edges chosen form $V \times V$.
(a) A simple multigraph with vertices V is (V, E) where the edges E are a multiset chosen from $\mathcal{P}_{2}(V)$. Prove that the number of simple multigraphs with vertices $V=\{1, \ldots, n\}$ and q edges is $\binom{N+q-1}{q}$ where $N=\binom{n}{2}$.
(b) A simple directed multigraph with vertices V is (V, E) where the edges E are a multiset chosen from $V \times V$. Find and prove a formula for the number of simple directed multigraphs with vertices $V=\{1,2, \ldots, n\}$ and q edges.
4. A partition of a positive integer is an unordered list of positive integers whose sum is the given integer. For example, the 7 partitions of 5 are

$$
1+1+1+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 3+1+1, \quad 3+2, \quad 4+1, \quad 5
$$

Let $q_{k}(n)$ be the number of partitions of n whose largest summand is at most k. For example,

$$
q_{1}(5)=1, \quad q_{2}(5)=3, \quad q_{3}(5)=5, \quad q_{4}(5)=6, \quad q_{5}(5)=7 .
$$

It is easily seen that $q_{1}(n)=1$ for all $n \geq 1$ since the only partition with largest summand at most 1 is $1+\cdots+1$.
(a) Give as simple as possible description of the set of partitions counted by $q_{k}(n)-q_{k-1}(n)$. Your description should refer to the largest part in a partition.
(b) Prove the recursion $q_{k}(n)=q_{k-1}(n)+q_{k}(n-k)$. You need not give initial conditions or state how large n and k must be in the recursion.
(With the initial conditions $q_{k}(0)=1$ and $q_{k}(n)=0$ for $n<0$, the recursion holds for $n \geq 1$.)

