1. In each case, the result is a product by the Rule of Product.
(a) Choose the face values for the three of a kinds $\binom{13}{2}$

AND the suits for those cards $\binom{4}{3}^{2}=4^{2}$.
This gives $13 \times 6 \times 4^{2}=1248$.
(b) Choose the face values for the pairs $\binom{13}{2}$

AND the suits for those cards $\binom{4}{2}^{2}=6^{2}$
AND the face values for the remaining two cards $\binom{11}{2}$
AND their suits 4^{2}.
This gives $13 \times 12 \times 11 \times 10 \times 6^{2} \times 4=2,471,040$.
2. (a) IMPOSSIBLE. A list without repeats can't contain more elements than the set.
(b) Except for labeling the vertices, there is just one such graph: A square with its diagonal and a fifth point with no edges.
(c) IMPOSSIBLE. An n-vertex simple graph has at most $\binom{n}{2}$ edges, but $\binom{4}{2}=6$.
3. (a) Since $\mathcal{P}_{2}(V)$ has $N=\binom{n}{2}$ elements, we must form a multiset of size q from a set of size N. This can be done in $\binom{N+q-1}{q}$ ways.
3. (b) Since $V \times V$ has n^{2} elements, we can reason as in (a) with $N=n^{2}$.
4. (a) $q_{k}(n)-q_{k-1}(n)$ counts partitions of n whose largest part is k. (To see this, note that every partition counted by $q_{k}(n)$ is also counted by $q_{k-1}(n)$ unless it has a part of size k.)
4. (b) To produce a partition with largest part at most k, either, do not include a part of size k OR do include a part of size k.

- do not: We have partitions of n with parts of size at most $k-1$, and these are counted by $q_{k-1}(n)$.
- do: We have a part of size k and a partition of what is left into parts of size at most k. Since $n-k$ is left, this is counted by $q_{k}(n-k)$.
You were not asked for initial conditions or how large n and k must be in the recursion, but here's one way to get an answer. The argument leading to the recursion seems to work for $n>0$ and $k>1$ if we're careful about what happens when we have a part of size k. Since that should only happen if $k \geq n, q_{k}(n-k)$ should be zero when $k<n$. In other words, $q_{k}(m)=0$ for $m<0$ is one initial condition and $q_{k}(0)=1$ is another. We also need to specify $q_{1}(n)$ since that appears in the recursion when $n=2$. Clearly $q_{1}(n)=1$ for $n>0$. These are the initial conditions that we need.

