- 1. In each case, the result is a product by the Rule of Product.
 - (a) Choose the face values for the three of a kinds $\binom{13}{2}$ AND the suits for those cards $\binom{4}{3}^2 = 4^2$. This gives $13 \times 6 \times 4^2 = 1248$.
 - (b) Choose the face values for the pairs $\binom{13}{2}$ AND the suits for those cards $\binom{4}{2}^2 = 6^2$ AND the face values for the remaining two cards $\binom{11}{2}$ AND their suits 4^2 . This gives $13 \times 12 \times 11 \times 10 \times 6^2 \times 4 = 2,471,040$.
- 2. (a) IMPOSSIBLE. A list without repeats can't contain more elements than the set.
 - (b) Except for labeling the vertices, there is just one such graph: A square with its diagonal and a fifth point with no edges.
 - (c) IMPOSSIBLE. An *n*-vertex simple graph has at most $\binom{n}{2}$ edges, but $\binom{4}{2} = 6$.
- 3. (a) Since $\mathcal{P}_2(V)$ has $N = \binom{n}{2}$ elements, we must form a multiset of size q from a set of size N. This can be done in $\binom{N+q-1}{q}$ ways.
- 3. (b) Since $V \times V$ has n^2 elements, we can reason as in (a) with $N = n^2$.
- 4. (a) $q_k(n) q_{k-1}(n)$ counts partitions of n whose largest part is k. (To see this, note that every partition counted by $q_k(n)$ is also counted by $q_{k-1}(n)$ unless it has a part of size k.)
- 4. (b) To produce a partition with largest part at most k, either, do not include a part of size k OR do include a part of size k.
 - do not: We have partitions of n with parts of size at most k-1, and these are counted by $q_{k-1}(n)$.
 - do: We have a part of size k and a partition of what is left into parts of size at most k. Since n k is left, this is counted by $q_k(n k)$.

You were not asked for initial conditions or how large n and k must be in the recursion, but here's one way to get an answer. The argument leading to the recursion seems to work for n > 0 and k > 1 if we're careful about what happens when we have a part of size k. Since that should only happen if $k \ge n$, $q_k(n-k)$ should be zero when k < n. In other words, $q_k(m) = 0$ for m < 0 is one initial condition and $q_k(0) = 1$ is another. We also need to specify $q_1(n)$ since that appears in the recursion when n = 2. Clearly $q_1(n) = 1$ for n > 0. These are the initial conditions that we need.